Skip to main content

Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test

Abstract

The parasitic mite Varroa destructor is a major pest of the western honeybee, Apis mellifera. The development of acaricide resistance in Varroa populations is a global issue. Discriminating concentrations of acaricides are widely used to detect pest resistance. Two methods, using either glass vials or paraffin capsules, are used to screen for Varroa resistance to various acaricides. We found the glass vial method to be useless for testing Varroa resistance to acaridices, so we developed a polypropylene vial bioassay. This method was tested on tau-fluvalinate-, acrinathrin-, and amitraz-resistant mite populations from three apiaries in Czechia. Acetone was used as a control and technical grade acaricide compounds diluted in acetone were applied to the polypropylene vials. The solutions were spread on the vial surface by rolling the vial, and were then evaporated. Freshly collected Varroa females were placed in the vials and the mortality of the exposed mites was measured after 24 h. The Varroa populations differed in mortality between the apiaries and the tested compounds. Mites from the Kyvalka site were resistant to acrinathrin, tau-fluvalinate, and amitraz, while mites from the Postrizin site were susceptible to all three acaricides. In Prelovice apiary, the mites were susceptible to acrinathrin and amitraz, but not to tau-fluvalinate. The calculated discriminating concentrations for tau-fluvalinate, acrinathrin, and amitraz were 0.66, 0.26 and 0.19 µg/mL, respectively. These results indicate that polyproplyne vial tests can be used to determine discriminating concentrations for the early detection of acaricide resistant Varroa. Finally, multiple-resistance in Kyvalka may indicate metabolic resistance.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Amdam GV, Hartfelder K, Norberg K, Hagen A, Omholt SW (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J Econ Entomol 97:741–747

    Article  PubMed  Google Scholar 

  2. Anonymous (2013) The protocol for control of the health of animals and vaccination for 2014 [Metodika kontroly zdraví zvířat a nařízené vakcinace na rok 2014]. In: Bulletin of the Ministry of Agriculture of the Czech Republic [Věstník Ministerstva zemědělství ČR] Ministry of the Agriculture of the Czech Republic, pp 14 (In Czech lang.) http://eagri.cz/public/web/file/279543/metodika_kontroly_zdravi_zvirat_2014.pdf

  3. Bak B, Wilde J, Siuda M (2012) Characteristics of north-eastern population of Varroa destructor resistant to synthetic pyrethroids. Med Weter 68:603–606

    Google Scholar 

  4. Bogdanov S, Kilchenmann V, Imdorf A (1998) Acaricide residues in some bee products. J Apic Res 37:57–67

    CAS  Google Scholar 

  5. Brodschneider R, Danihlik J, Klima Z, Tichy Z, Kobza R, Crailsheim K (2014) Comparison of apiculture and winter losses of honey bee colonies in Austria and the Czech Republic. Poster presentation: 10th COLOSS conference, 6th–8th September 2014, Murcia, Spain. http://bienenstand.at/wp-content/uploads/2014/09/BrodschneiderCOLOSSMurcia2014.pdf. Accessed 4 Nov 2015

  6. Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    CAS  Article  PubMed  Google Scholar 

  7. Chen AC, He H, Davey RB (2007) Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet Parasitol 148:379–383

    CAS  Article  PubMed  Google Scholar 

  8. Colin ME, Vandame R, Jourdam P, Di Pasquale S (1997) Fluvalinate resistance of Varroa jacobsoni Oudemans (Acari: Varroidae) in Mediterranean apiaries of France. Apidologie 28:375–384

    CAS  Article  Google Scholar 

  9. Corley SW, Jonsson NN, Piper EK, Cutulle C, Stear MJ, Seddon JM (2013) Mutation in the RmβAOR gene is associated with amitraz resistance in the cattle tick Rhipicephalus microplus. Proc Natl Acad Sci USA 110:16772–16777

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cornman RS, Schatz MC, Johnston JS, Chen Y-P, Pettis J, Hunt G, Bourgeois L, Elsik C, Anderson D, Grozinger CM, Evans JD (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genom 11:602. doi:10.1186/1471-2164-11-602

    Article  Google Scholar 

  11. Elzen PJ, Eischen FA, Baxter JR, Elzen GW, Wilson WT (1999) Detection of resistance in US Varroa jacobsoni Oud. (Mesostigmata: Varroidae) to the acaricide fluvalinate. Apidologie 30:13–17

    CAS  Article  Google Scholar 

  12. Elzen PJ, Baxter JR, Spivak M, Wilson WT (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31:437–441

    CAS  Article  Google Scholar 

  13. Erban T, Harant K, Hubalek M, Vitamvas P, Kamler M, Poltronieri P, Tyl J, Markovic M, Titera D (2015) In-depth proteomic analysis of Varroa destructor: detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite. Sci Rep 5:13907. doi:10.1038/srep13907

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Cabrera J, Davies TG, Field LM, Kennedy PJ, Williamson MS (2013) An amino acid substitution (L925 V) associated with resistance to pyrethroids in Varroa destructor. PLoS ONE 8:e82941. doi:10.1371/journal.pone.0082941

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hubert J, Nesvorna M, Kamler M, Kopecky J, Tyl J, Titera D, Stara J (2014) Point mutations in the sodium channel gene conferring tau-fluvalinate resistance in Varroa destructor. Pest Manag Sci 70:889–894

    CAS  Article  PubMed  Google Scholar 

  16. Hubert J, Erban T, Kamler M, Kopecky J, Nesvorna M, Hejdankova S, Titera D, Tyl J, Zurek L (2015) Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris. J Appl Microbiol 119:640–654

    CAS  Article  PubMed  Google Scholar 

  17. Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity—USA. Apidologie 41:312–331

    CAS  Article  Google Scholar 

  18. Kanga LHB, Adamczyk J, Marshall K, Cox R (2010) Monitoring for resistance to organophosphorus and pyrethroid insecticides in Varroa mite populations. J Econ Entomol 103:1797–1802

    CAS  Article  PubMed  Google Scholar 

  19. Maggi MD, Ruffinengo SR, Damiani N, Sardella NH, Eguaras MJ (2009) First detection of Varroa destructor resistance to coumaphos in Argentina. Exp Appl Acarol 47:317–320

    Article  PubMed  Google Scholar 

  20. Maggi MD, Ruffinengo SR, Mendoza Y, Ojeda P, Ramallo G, Floris I, Eguaras MJ (2011) Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance. Parasitol Res 108:815–821

    Article  PubMed  Google Scholar 

  21. Martel A-C, Zeggane S, Aurieres C, Drajnudel P, Faucon J-P, Aubert M (2007) Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50. Apidologie 38:534–544

    CAS  Article  Google Scholar 

  22. Martin SJ (2004) Acaricide (pyrethroid) resistance in Varroa destructor. Bee World 85:67–69

    Article  Google Scholar 

  23. Milani N (1995) The resistance of Varroa jacobsoni Oud to pyrethroids: a laboratory assay. Apidologie 26:415–429

    CAS  Article  Google Scholar 

  24. Milani N (1999) The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie 30:229–234

    CAS  Article  Google Scholar 

  25. Milani N, Della Vedova G (1996) Determination of the LC50 in the mite Varroa jacobsoni of the active substances in Perizin® and Cekafix®. Apidologie 27:175–184

    CAS  Article  Google Scholar 

  26. Peroutka M, Drobnikova V, Titera D (2003) Disseases and pests of the honeybee. [Nemoci a skudci vcely medonosne.] In: Vesely V (ed) Vcelarstvi. Brazda-publisher, Prague, pp 203–229 (in Czech)

  27. Ritter W, Roth H (1988) Experiments with mite resistance to varroacidal substances in the laboratory. In: Cavalloro R (ed) European research on varroatosis control. Proceedings of a meeting of the EC experts’ group, Bad Homburg, 15–17 October 1986. A.A. Balkema, Rotterdam, pp 157–160

  28. Rodriguez-Dehaibes SR, Otero-Colina G, Sedas VP, Jimenez JAV (2005) Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. J Apic Res 44:124–125

    CAS  Google Scholar 

  29. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    Article  PubMed  Google Scholar 

  30. Sammataro D, Untalan P, Guerrerob F, Finleya J (2005) The resistance of varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int J Acarol 31:67–74

    Article  Google Scholar 

  31. Santiago GP, Otero-Colina G, Sanchez DM, Guzman MER, Vandame R (2000) Comparing effects of three acaricides on Varroa jacobsoni (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae) using two application techniques. Flo Entomol 83:468–476

    CAS  Article  Google Scholar 

  32. Soderlund DM (2008) Pyrethroids, knockdown resistance and sodium channels. Pest Manag Sci 64:610–616

    CAS  Article  PubMed  Google Scholar 

  33. Spreafico M, Eordegh FR, Bernardinelli I, Colombo M (2001) First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie 32:49–55

    CAS  Article  Google Scholar 

  34. Thompson HM, Brown MA, Ball RF, Bew MH (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33:357–366

    CAS  Article  Google Scholar 

  35. Thompson H, Ball R, Brown M, Bew M (2003) Varroa destructor resistance to pyrethroid treatments in the United Kingdom. Bull Insectol 56:175–181

    Google Scholar 

  36. Trouiller J (1998) Monitoring Varroa jacobsoni resistance to pyrethroids in western Europe. Apidologie 29:537–546

    Article  Google Scholar 

  37. van Dooremalen C, Gerritsen L, Cornelissen B, van der Steen JJM, van Langevelde F, Blacquiere T (2012) Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS ONE 7:e36285. doi:10.1371/journal.pone.0036285

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Dooremalen C, Stam E, Gerritsen L, Cornelissen B, van der Steen J, van Langevelde F, Blacquiere T (2013) Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. J Insect Physiol 59:487–493

    Article  PubMed  Google Scholar 

  39. Watkins M (2011) Chemical control of Varroa. In: Carreck NL (ed) Varroa: still a problem in the 21st century?. International Bee Research Association, Cardiff, pp 33–42

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that have improved the manuscript. We acknowledge the assistance from the beekeepers for the collection of samples from honeybee colonies. The authors are obliged to Dalibor Titera and Jaroslav Havlik for valuable comments on drafts of this manuscript and Martin Markovic for help. This study was supported by The Ministry of Agriculture of the Czech Republic, project QJ1530148.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Hubert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamler, M., Nesvorna, M., Stara, J. et al. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Exp Appl Acarol 69, 1–9 (2016). https://doi.org/10.1007/s10493-016-0023-8

Download citation

Keywords

  • Varroa
  • Acaricide
  • Multiple-resistance
  • Discriminating concentrations
  • Apiculture