Experimental and Applied Acarology

, Volume 68, Issue 1, pp 83–96 | Cite as

Cryptic speciation within Phytoptus avellanae s.l. (Eriophyoidea: Phytoptidae) revealed by molecular data and observations on molting Tegonotus-like nymphs

  • Tatjana CvrkovićEmail author
  • Philipp Chetverikov
  • Biljana Vidović
  • Radmila Petanović


Hazelnut big bud mite, Phytoptus avellanae Nalepa, is one of the most harmful pests of Corylus spp. (Corylaceae) worldwide. Herein, we show that this species represents a complex of two cryptic species: one that lives and reproduces in buds causing their enlargement (‘big buds’) and drying, whereas the other is a vagrant living on leaves, under bud scales and in catkins, based on phylogenetic analyzes of mitochondrial cytochrome c oxidase subunit I (COI) DNA and the nuclear D2 region of 28S rDNA sequences. A molecular assessment based on mtCOI DNA and nuclear D2 28S rDNA revealed consistent differences of 16.8 and 3.5 % between the two species, respectively. Molecular analysis also revealed that atypical flattened nymphs (Tegonotus-like nymphs sensu Keifer in Mites Injurious to Economic Plants, University of California Press, Berkeley, pp 327–562, 1975) with differently annulated opisthosoma, which appear in the life cycle of P. avellanae s.l., belong to the ‘vagrant’ lineage, i.e. vagrant cryptic species. Light microscopy images of Tegonotus-like nymphs molting into males and females are presented for the first time. Our results suggest that the name P. avellanae comprise two species. Big bud mite should keep the name P. avellanae, and the vagrant cryptic species should be re-named after a proper morphological description is made.


Phytoptus avellanae Cryptic species COI mtDNA 28S rDNA Tegonotus-like nymphs 



This work was partly supported by a research grant of the Ministry of Education, Science and Technological Development of Serbia (Grant # III 43001). Collecting mites in the USA and Russia, work visit of PC to Belgrade University (Serbia) and microscopic studies were supported by the Russian Science Foundation (RSCF grant #14-14-00621) to the second author. We sincerely thank Prof. James W. Amrine (West Virginia University, Morgantown, WV, USA) for collecting samples in North America. Authors are grateful to Prof. Marko Anđelković, academician of SASA who for several years organized surveys of eriophyoids in Tara National Park, Serbia. We would also like to thank Mrs. Dragica Smiljanić and PhD student Mrs. Katarina Mladenović, University of Belgrade, Faculty of Agriculture, Serbia, and Dr. Ivo Toševski and Dr. Jelena Jović, Institute for Plant protection and Environment, Serbia, for collecting part of the samples.


  1. Amrine JW Jr, Stasny TA (1994) Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. Indira Publishing House, West BloomfieldGoogle Scholar
  2. Amrine JW Jr, Stasny TA, Flechtmann CHW (2003) Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Indira Publishing House, West BloomfieldGoogle Scholar
  3. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155CrossRefPubMedGoogle Scholar
  4. Castagnoli M, Oldfield GN (1996) Other fruit trees and nut trees. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. World Crop Pests 6. Elsevier, Amsterdam, pp 543–559CrossRefGoogle Scholar
  5. Chetverikov PE, Petanović R, Sukhareva SI (2009) Systematic remarks on eriophyoid mites from the subfamily Phytoptinae Murray, 1877 (Acari: Eriophyoidea: Phytoptidae). Zootaxa 2070:63–68Google Scholar
  6. Chetverikov PE, Beaulieu F, Cvrković T, Vidović B, Petanović RU (2012a) Oziella sibirica (Acari: Eriophyoidea: Phytoptidae), a new eriophyoid mite species described using confocal microscopy, COI barcoding and 3D surface reconstruction. Zootaxa 3560:41–60Google Scholar
  7. Chetverikov PE, Cvrković T, Vidović B, Petanović R (2012b) Phylogenetic study of Phytoptidae (Acari, Eriophyoidea) based on mitochondrial COI sequence strongly support the division of the genus Phytoptus into two groups. In: Abstracts of the 7th symposium of the European Association of Acarologists 9–13 July 2012, Vienna, Austria, p 80Google Scholar
  8. Chetverikov PE, Cvrković T, Vidović B, Petanović RU (2013) Description of a new relict eriophyoid mite, Loboquintus subsquamatus n. gen. & n. sp. (Eriophyoidea, Phytoptidae, Pentasetacini) based on confocal microscopy, SEM, COI barcoding and novel CLSM anatomy of internal genitalia. Exp Appl Acarol 61:1–30CrossRefPubMedGoogle Scholar
  9. Chetverikov PE, Cvrković T, Makunin A, Sukhareva S, Vidović B, Petanović R (2015) Basal divergence of Eriophyoidea (Acariformes, Eupodina) inferred from combined partial COI and 28S gene sequences and CLSM genital anatomy. Exp Appl Acarol 67:219–245CrossRefPubMedGoogle Scholar
  10. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:596–599CrossRefGoogle Scholar
  11. Heinze K (1952) Polyvinylalkohol-Lactophenol-Gemisch als Einbettungsmittel für Blattläuse. Naturwissenschaften 39:285–286CrossRefGoogle Scholar
  12. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  13. Keifer HH (1940) Eriophyid studies IX. Bull Calif Dep Agr 29:112–117Google Scholar
  14. Keifer HH (1975) The Eriophyoidea Nalepa. In: Jeppson LR, Keifer HH, Baker EW (eds) Mites injurious to economic plants. University of California Press, Berkeley, pp 327–587Google Scholar
  15. Krantz GW (1974) The role of Phytocoptella avellanae (Nal.) and Cecidophyopsis vermiformis (Nal.) in big bud of filbert. In: Proceedings of the 4th international congress of acarology, pp 201–208Google Scholar
  16. Lewandowski M, Skoracka A, Szydło W, Kozak M, Druciarek T, Griffiths DA (2014) Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization. Exp Appl Acarol 63:497–520PubMedCentralCrossRefPubMedGoogle Scholar
  17. Martin P, Dabert M, Dabert J (2010) Molecular evidence for species separation in the water mite Hygrobates nigromaculatus Lebert, 1879 (Acari, Hydrachnidia): evolutionary consequences of the loss of larval parasitism. Aquat Sci 72:347–360CrossRefGoogle Scholar
  18. Massee AM (1930) On some species of gall-mites (Eriophyidae) found on Corylus avellana. L. Bull Entomol Res 21:165–168CrossRefGoogle Scholar
  19. Nuzzaci G (1976) Contributo alla conoscenza dell’anatomia degli Acari Eriofidi. Entomologica 12:21–55Google Scholar
  20. Nuzzaci G, Liaci LS (1975) Aspetti ultrastrutturali dalla cellula ouvo e delle cellule follicolari di Phytoptus avellanae Nal. (Acarina: Eriophyoidea). Entomologica 11:173–181Google Scholar
  21. Ozman SK (2000) Some biological and morphological differences between gall and vagrant forms of Phytoptus avellanae Nal. (Acari: Phytoptidae). Int J Acarol 26:215–219CrossRefGoogle Scholar
  22. Ozman SK, Toros S (1997a) Life cycles of Phytoptus avellanae Nal. and Cecidophyopsis vermiformis Nal. (Acarina: Eriophyoidea). Acta Hortic 445:493–501CrossRefGoogle Scholar
  23. Ozman SK, Toros S (1997b) Damage caused by Phytoptus avellanae Nal. and Cecidophyopsis vermiformis Nal. (Eriophyoidea: Acarina) in hazelnut. Acta Hortic 445:537–543CrossRefGoogle Scholar
  24. Ozman-Sulivan SK (2006) Life history of Kampimodromus aberrans as a predator of Phytoptus avellanae (Acari: Phytoseiidae, Phytoptidae). Exp Appl Acarol 38:15–23CrossRefGoogle Scholar
  25. Ozman-Sulivan SK (2014) Do the contradictory life cycles of the hazelnut big bud mite, Phytoptus avellanae (Nal.) (Acari: Phytoptidae) imply two species? In: Abstract book, XIV International Congress of Acarology, 13–18th, July, 2014, Kyoto, Japan, p 62Google Scholar
  26. Ozman-Sulivan SK, Akça I (2005) Efficiency of pesticides against big bud mites [Phytoptus avellanae Nal. and Cecidophyopsis vermiformis Nal.] (Acarina: Eriophyoidea) on hazelnut. Acta Hortic 686:393–399CrossRefGoogle Scholar
  27. Petanović R, Dobrivojević K, Bošković R (1989) Life cycle of hazelnut big bud mite Phytoptus avellanae Nal. (Acarida: Eriophyoidea) and the results of its control. Zašt bilja 40:433–441 (in Serbian) Google Scholar
  28. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  29. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  30. Skoracka A, Dabert M (2010) The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bull Ent Res 100:263–272CrossRefGoogle Scholar
  31. Skoracka A, Kuczynski L, Szydło W, Rector B (2013) The wheat curl mite Aceria tosichella (Acari: Eriophyoidea) is a complex of cryptic lineages with divergent host ranges: evidence from molecular and plant bioassay data. Biol J Linn Soc 109:165–180CrossRefGoogle Scholar
  32. Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front Zool 4:6PubMedCentralCrossRefPubMedGoogle Scholar
  33. Stamenković S, Milenković S, Pešić M, Mitrović M (1997) Population dynamics, harmfulness and control of Phytoptus avellanae Nalepa in Western Serbia. Acta Hortic 445:521–526CrossRefGoogle Scholar
  34. Stevens M, Hogg I (2006) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180CrossRefGoogle Scholar
  35. Sukhareva SI (1994) Family Phytoptidae Murray 1877 (Acari: Tetrapodili), its consisting, structure and suggested ways of evolution. Acarina 2:47–72Google Scholar
  36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  37. Thompson MM (1977) Inheritance of big bud mite susceptibility in filberts. J Am Soc Hortic Sci 102:39–42Google Scholar
  38. Tsolakis H, Ragusa E, Ragusa Di Chiara S (2000) Distribution of phytoseiid mites (Parasitiformes: Phytoseiidae) on hazelnut at two different altitudes in Sicily (Italy). Environ Entomol 29:1251–1257CrossRefGoogle Scholar
  39. Vidal-Barraquer R, Moreno Gil, de Mora J, de Sivatte M, Miquel J (1966) Phytoptus avellanae Nal. and other eriophyids on hazel. Bol Pathol Veg d’Entomol Madrid 29:133–235Google Scholar
  40. Webber J, Chapman RB, Worner SP (2008) Forecasting emergence and movement of overwintering hazelnut big bud mites from big buds. Exp Appl Acarol 45:39–51CrossRefPubMedGoogle Scholar
  41. Zhang D-X, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tatjana Cvrković
    • 1
    Email author
  • Philipp Chetverikov
    • 2
    • 3
  • Biljana Vidović
    • 4
  • Radmila Petanović
    • 4
  1. 1.Institute for Plant Protection and Environment BelgradeZemunSerbia
  2. 2.Department of Invertebrate ZoologySaint-Petersburg State UniversitySt. PetersburgRussia
  3. 3.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Department of Entomology and Agricultural Zoology, Faculty of Agriculture BelgradeUniversity of BelgradeZemunSerbia

Personalised recommendations