Skip to main content

Expression level and immunolocalization of de novo methyltransferase 3 protein (TuDNMT3) in adult females and males of the two-spotted spider mite, Tetranychus urticae

Abstract

DNA methylation is an epigenetic mechanism for regulating developmental and other important processes in eukaryotes. Several essential components of the DNA methylation machinery have been identified, such as DNA methyltransferases. In the two-spotted spider mite, Tetranychus urticae Koch, we have identified one DNA methyltransferase 3 gene (Tudnmt3) and tentatively investigated its potential role in adult females and males. Here, to better elucidate the functional role of Tudnmt3, its protein structure, expression and localization were subjected to more detailed analyses. Bioinformatic analyses clearly showed that the structure of TuDNMT3 was highly conserved, with several vital amino acid residues for the activation and stabilization of its confirmation. Western blot analyses revealed that this protein was expressed in both genders, with higher expression in adult females, which was inconsistent with the gene expression, suggesting translational regulation of Tudnmt3. Subsequent immunodetection provided supportive evidence for higher expression of the TuDNMT3 protein in adult females and indicated that this protein was generally localized in the cytoplasm and that its expression was predominantly confined to the genital region of spider mites, strengthening the hypothesis that de novo methylation mediated by Tudnmt3 in gonad development or gametogenesis has a different mechanism from maintenance methyltransferase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Altun G, Loring JF, Laurent LC (2010) DNA methylation in embryonic stem cells. J Cell Biochem 109:1–6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bachman KE, Rountree MR, Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276:32282–32287

    CAS  Article  PubMed  Google Scholar 

  • Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci U S A 80:5559–5563

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Chaillet JR, Vogt TF, Beier DR, Leder P (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66:77–83

    CAS  Article  PubMed  Google Scholar 

  • Chédin F (2011) The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci 101:255–285

    Article  PubMed  Google Scholar 

  • Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16:341–350

    PubMed Central  Article  PubMed  Google Scholar 

  • Chow JC, Yen Z, Ziesche SM, Brown CJ (2005) Silencing of the mammalian X chromosome. Annu Rev Genomics Hum Genet 6:69–92

    CAS  Article  PubMed  Google Scholar 

  • Czank A, Häuselman R, Page AW, Leonhardt H, Bestor TH, Schaffner W, Hergersberg M (1991) Expression in mammalian cells of a cloned gene encoding murine DNA methyltransferase. Gene 109:259–263

    CAS  Article  PubMed  Google Scholar 

  • Edwards TM, Myers JP (2007) Environmental exposures and gene regulation in disease etiology. Environ Health Perspect 115:1264–1270

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Esposito AM, Mateyak M, He D, Lewis M, Sasikumar AN, Hutton J, Copeland PR, Kinzy TG (2010) Eukaryotic polyribosome profile analysis. J Vis Exp. doi:10.3791/1948

    PubMed Central  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536–2544

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    CAS  Article  PubMed  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    CAS  Article  PubMed  Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  PubMed  Google Scholar 

  • Gruenbaum Y, Cedar H, Razin A (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295:620–622

    CAS  Article  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    CAS  Article  PubMed  Google Scholar 

  • Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, Tian C, Wang J, Cong Y, Xu Y (2015) Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517:640–644

    CAS  Article  PubMed  Google Scholar 

  • Hendrich B, Tweedie S (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet 19:269–277

    CAS  Article  PubMed  Google Scholar 

  • Hermann A, Schmitt S, Jeltsch A (2003) The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278:31717–31721

    CAS  Article  PubMed  Google Scholar 

  • Jone AP, Liang GN (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811

    Article  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    CAS  Article  PubMed  Google Scholar 

  • Kim JK, Samaranayake M, Pradhan S (2009) Epigenetic mechanisms in mammals. Cell Mol Life Sci 66:596–612

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    CAS  Article  PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    CAS  Article  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    CAS  Article  PubMed  Google Scholar 

  • Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD (2004) Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res 32:598–610

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Lockett GA, Helliwell P, Maleszka R (2010) Involvement of DNA methylation in memory processing in the honey bee. NeuroReport 21:812–816

    CAS  Article  PubMed  Google Scholar 

  • Lyko F, Maleszka R (2011) Insects as innovative models for functional studies of DNA Methylation. Trends Genet 27:127–131

    CAS  Article  PubMed  Google Scholar 

  • Margot JB, Cardoso MC, Leonhardt H (2001) Mammalian DNA methyltransferases show different subnuclear distributions. J Cell Biochem 83:373–379

    CAS  Article  PubMed  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    CAS  Article  PubMed  Google Scholar 

  • Newell-Price J, Clark AJL, King P (2000) DNA methylation and silencing of gene expression. Trends Endocrinol Metab 11:143–148

    Article  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    CAS  Article  PubMed  Google Scholar 

  • Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-Dnmt3-Dnmt3L domain. EMBO Rep 10:1235–1241

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720

    CAS  Article  PubMed  Google Scholar 

  • Raddatz G, Guzzardo PM, Olova N, Fantappié MR, Rampp M, Schaefer M, ReikW Hannon GJ, Lyko F (2013) Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci U S A 110:8627–8631

    PubMed Central  Article  PubMed  Google Scholar 

  • Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA (2010) Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem 285:4110–4121

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    CAS  Article  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting parental influence on the genome. Genetics 2:21–32

    CAS  PubMed  Google Scholar 

  • Reither S, Li F, Gowher H, Jeltsch A (2003) Catalytic mechanism of DNA-(Cytosine-C5)-methyltransferases revisited: covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a Enzyme. J Mol Biol 329:675–684

    CAS  Article  PubMed  Google Scholar 

  • Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42

    CAS  Article  PubMed  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    CAS  Article  PubMed  Google Scholar 

  • Suzuki MM, Yamada T, Kihara-Negishi F, Sakurai T, Hara E, Tenen DG, Hozumi N, Oikawa T (2006) Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25:2477–2488

    CAS  Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43:309–315

    CAS  Article  PubMed  Google Scholar 

  • Yang SX, Guo C, Sun JT, Hong XY (2014) Sex-dependent activity of de novo methyltransferase 3 (Tudnmt3) in the two-spotted mite, Tetranychus urticae Koch. Insect Mol Biol 23:743–753

    CAS  Article  PubMed  Google Scholar 

  • Zemach A, Zilberman D (2010) Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol 20:R780–R785

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jing-Yu Zhao and Chao-Wen Zhu of the Department of Entomology, Nanjing Agricultural University (NJAU), China for their help with the collection of spider mites. We are grateful to Da-Song Chen of NJAU, China for his kind help with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yue Hong.

Ethics declarations

Funding

This study was supported in part by a Grant-in-aid from the Science and Technology Program of the National Public Welfare Professional Fund (No. 201103020) from the Ministry of Agriculture of China, and a Grant-in-aid for Scientific Research (Nos. 31172131 and 31371944) from the National Natural Science Foundation of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 3259 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, SX., Guo, C., Zhang, YK. et al. Expression level and immunolocalization of de novo methyltransferase 3 protein (TuDNMT3) in adult females and males of the two-spotted spider mite, Tetranychus urticae . Exp Appl Acarol 67, 381–392 (2015). https://doi.org/10.1007/s10493-015-9957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9957-5

Keywords

  • DNA methyltransferase 3 protein
  • Gender
  • Expression
  • Localization
  • Tetranychus urticae