Nematode consumption by mite communities varies in different forest microhabitats as indicated by molecular gut content analysis

Abstract

Soil animals live in complex and heterogeneous habitats including litter of various types but also microhabitats such as mosses, fungal mats and grass patches. Soil food webs have been separated into a slow fungal and a fast bacterial energy channel. Bacterial-feeding nematodes are an important component of the bacterial energy channel by consuming bacteria and forming prey for higher trophic levels such as soil microarthropods. Investigating the role of nematodes as prey for higher trophic level consumers has been hampered by methodological problems related to their small body size and lack in skeletal structures which can be traced in the gut of consumers. Recent studies using molecular gut content analyses suggest that nematodes form major prey of soil microarthropods including those previously assumed to live as detritivores. Using molecular markers we traced nematode prey in fourteen abundant soil microarthropod taxa of Mesostigmata and Oribatida (both Acari) from three different microhabitats (litter, grass and moss). Consumption of nematodes varied between mite species indicating that trophic niche variation contributes to the high diversity of microarthropods in deciduous forests. Further, consumption of nematodes by Mesostigmata (but not Oribatida) differed between microhabitats indicating that trophic niches vary with habitat characteristics. Overall, the results suggest that free-living bacterial-feeding nematodes form important prey for soil microarthropods including those previously assumed to live as detritivores.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alphei J (1998) Differences in soil nematode community structure of beech forests: comparison between a mull and a moder soil. Appl Soil Ecol 9:9–15

    Article  Google Scholar 

  2. Anderson JM (1975) The enigma of soil animal species diversity. In: Vanek J (Ed) Progress in soil ecology. Proceedings of the fifth international colloquium of soil zoology, 1973, Academica, Prague, pp 51–58

  3. Bardgett RD, Wardle DA (2010) Above-belowground linkages: biotic interactions, ecosystem processes, and global change (Oxford Series in Ecology and Evolution). Oxford University Press, New York

    Google Scholar 

  4. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    PubMed  Article  Google Scholar 

  5. Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. J Anim Ecol 81:214–221

    PubMed  Article  Google Scholar 

  6. Caruso T, Trokhymets V, Bargagli R, Convey P (2013) Biotic interactions as a structuring force in soil communities: evidence from the micro-arthropods of an Antarctic moss model system. Oecologia 172:495–503

    PubMed  Article  Google Scholar 

  7. Crotty FV, Blackshaw RP, Murray PJ (2011) Tracking the flow of bacterially derived 13C and 15N through soil fauna feeding channels. Rapid Commun Mass Spectrom 25:1503–1513

    CAS  PubMed  Article  Google Scholar 

  8. Demeure Y, Freckman DW, van Gundy SD (1979) Anhydrobiotic coiling of nematodes in soil. J Nematol 11:189–195

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Erdmann G, Otte V, Langel R, Scheu S, Maraun M (2007) The trophic structure of bark-living oribatid mite communities analysed with stable isotopes (15N; 13C) indicates strong niche differentiation. Exp Appl Acarol 41:1–10

    PubMed  Article  Google Scholar 

  10. Erdmann G, Scheu S, Maraun M (2012) Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Exp Appl Acarol 57:157–169

    PubMed  Article  PubMed Central  Google Scholar 

  11. Ferlian O, Scheu S, Pollierer MM (2012) Trophic interactions in centipedes (Chilopoda, Myriapoda) as indicated by fatty acid patterns: variations with life stage, forest age and season. Soil Biol Biochem 52:33–42

    CAS  Article  Google Scholar 

  12. Fischer M, Bossdorf O, Gockel S, Hansel F, Hemp A, Hessenmoeller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schoening I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  13. Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agric Ecosyst Environ 24:195–217

    Article  Google Scholar 

  14. Freckman DW, Virginia RA (1993) Extraction of nematodes from Dry Valley Antarctic soils. Polar Biol 13:483–487

    Article  Google Scholar 

  15. Frey F (1971) Über die Eignung von Acrobeloides buetschlii (Cephalobidae) für nematologische Laboruntersuchungen. Nematologica 17:474–477

    Article  Google Scholar 

  16. Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biol Fert Soils 9:83–88

    Article  Google Scholar 

  17. Heidemann K, Scheu S, Ruess L, Maraun M (2011) Molecular detection of nematode predation and scavenging in oribatid mites: laboratory and field experiments. Soil Biol Biochem 43:2229–2236

    CAS  Article  Google Scholar 

  18. Heidemann K, Hennies A, Schakowske J, Blumenberg L, Ruess L, Scheu S, Maraun M (2014) Free-living nematodes as prey for higher trophic levels of forest soil food webs. Oikos. doi:10.1111/j.1600-0706.2013.00872.x

    Google Scholar 

  19. Hohberg K, Traunspurger W (2005) Predator–prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biol Fert Soils 41:419–427

    Article  Google Scholar 

  20. Hosmer DW, Lemeshow S (1989) Applied Logistic Regression. Wiley, New York

    Google Scholar 

  21. Karg W (1989) Acari (Acarina), Milben. Unterordnung Parasitiformes (Anactinochaeta). Cohors Uropodina Kramer. Schildkrötenmilben. Die Tierwelt Deutschlands 67. Gustav Fischer

  22. Karg W (1993) Acari (Acarina), Milben. Unterordnung Parasitiformes (Anactinochaeta). Cohors Gamasina Leach. Raubmilben. Die Tierwelt Deutschlands 59. Gustav Fischer

  23. Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21

    Google Scholar 

  24. King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    Google Scholar 

  25. Klarner B, Maraun M, Scheu S (2013) Trophic diversity and niche partitioning in a species rich predator guild—natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forest. Soil Biol Biochem 57:323–333

    Article  Google Scholar 

  26. Koehler HH (1997) Mesostigmata (Gamasina, Uropodina), efficient predators in agroecosystems. Agric Ecosyst Environ 62:105–117

    Article  Google Scholar 

  27. Koehler HH (1999) Predatory mites (Gamasina, Mesostigmata). Agric Ecosyst Environ 74:395–410

    Article  Google Scholar 

  28. Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383

    Article  Google Scholar 

  29. Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003a) Adding to „the enigma of soil animal diversity“: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95

    Article  Google Scholar 

  30. Maraun M, Heethoff M, Scheu S, Weigmann G, Norton RA, Thomas RH (2003b) Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species. Exp Appl Acarol 29:265–277

    PubMed  Article  Google Scholar 

  31. Maraun M, Erdmann G, Fischer BM, Pollierer MM, Norton RA, Schneider K, Scheu S (2011) Stable isotopes revisited: their use and limits for oribatid mite trophic ecology. Soil Biol Biochem 43:877–882

    CAS  Article  Google Scholar 

  32. Mikola J, Sulkava P (2001) Responses of microbial-feeding nematodes to organic matter distribution and predation in experimental soil habitat. Soil Biol Biochem 33:811–817

    CAS  Article  Google Scholar 

  33. Moore JC, Hunt HW (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263

    Article  Google Scholar 

  34. Moore JC, McCann K, Setälä H, De Ruiter PC (2003) Top–down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Article  Google Scholar 

  35. Mulder C, Vonk JA (2011) Nematode traits and environmental constraints in 200 soil systems: scaling within the 60–6,000 μm body size range. Ecology 92:2004

    Article  Google Scholar 

  36. Muraoka M, Ishibashi N (1976) Nematode-feeding mites and their feeding behaviour. Appl Entomol Zool 11:1–7

    Google Scholar 

  37. Nielsen UN, Osler GHR, Campbell CD, Burslem DFRP, van der Wal R (2012) Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats. Pedobiologia 55:83–91

    Article  Google Scholar 

  38. Norton RA, Behan-Pelletier VM (2009) Suborder Oribatida. In: Krantz GW, Walter DE (eds) A manual of Acarology, 3rd edn. Texas Tech University Press, Lubbock

    Google Scholar 

  39. Oliveira AR, de Moraes GJ, Ferraz LCCB (2007) Consumption rate of phytonematodes by Pergalumna sp. (Acari: Oribatida: Galumnidae) under laboratory conditions determined by a new method. Exp Appl Acarol 41:183–189

    PubMed  Article  Google Scholar 

  40. Peschel K, Norton RA, Scheu S, Maraun M (2006) Do oribatid mites live in enemy-free space? Evidence from feeding experiments with the predatory mite Pergamasus septentrionalis. Soil Biol Biochem 38:2985–2989

    Google Scholar 

  41. Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350:669–674

    Article  Google Scholar 

  42. Pollierer MM, Langel R, Scheu S, Maraun M (2009) Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol Biochem 41:1221–1226

    CAS  Article  Google Scholar 

  43. Pollierer MM, Dyckmans J, Scheu S, Haubert D (2012) Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol 26:978–990

    Article  Google Scholar 

  44. Powers LE, Ho M, Freckman DW, Virginia RA (1998) Distribution, community structure and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arct Alp Res 30:133–141

    Article  Google Scholar 

  45. Proctor HC, Montgomery KM, Rosen KE, Kitching RL (2002) Are tree trunks habitats or highways? A comparison of oribatid mite assemblages from hoop-pine bark and litter. Aust J Entomol 41:294–299

    Article  Google Scholar 

  46. R Development Core Team (2009) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  47. Read DS, Sheppard SK, Bruford MW, Glen DM, Symondson WOC (2006) Molecular detection of predation by soil micro-arthropods on nematodes. Mol Ecol 15:1963–1972

    CAS  PubMed  Article  Google Scholar 

  48. Rocket CL (1980) Nematode predation by oribatid mites (Acari: Oribatida). Int J Acarol 6:219–224

    Article  Google Scholar 

  49. Rockett CL, Woodring JP (1966) Oribatid mites as predators of soil nematodes. Ann Entomol Soc Am 59:669–671

    Google Scholar 

  50. Ruess L (1995) Studies on the nematode fauna of an acid forest soil: spatial distribution and extraction. Nematologica 41:229–239

    Article  Google Scholar 

  51. Ruess L (2003) Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology 5:179–181

    Article  Google Scholar 

  52. Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–296

    Article  Google Scholar 

  53. Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food webs. In: Tscharntke T, Hawkins BA (eds) Multitrophic Level Interactions. Cambridge University Press, Cambridge, pp 223–264

    Google Scholar 

  54. Scheu S, Ruess L, Bonkowski M (2005) Interactions between microorganisms and soil micro- and mesofauna. In: Buscot F, Varma A (eds) Soil Biology, Microorganisms in Soils: Roles in Genesis and Functions, vol 3. Springer, New York, pp 253–275

    Google Scholar 

  55. Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in oribatid mites (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    CAS  Article  Google Scholar 

  56. Sohlenius B (1996) Structure and composition of the nematode fauna in pine forest soil under the influence of clear-cutting. Effects of slash removal and field layer vegetation. Europ J Soil Biol 32:1–14

    Google Scholar 

  57. Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Co, New York

    Google Scholar 

  58. Strickland MS, Wickings K, Bradford MA (2012) The fate of glucose, a low molecular weight compound of root exudates, in the belowground foodweb of forests and pastures. Soil Biol Biochem 49:23–29

    CAS  Article  Google Scholar 

  59. Sulkava P, Huhta V (1998) Habitat patchiness affects decomposition and faunal diversity: a microcosm experiment on forest floor. Oecologia 116:390–396

    Article  Google Scholar 

  60. Sunderland KD (1988) Quantitative methods for detecting invertebrate predation occurring in the field. Ann Appl Biol 112:201–224

    Article  Google Scholar 

  61. Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    CAS  PubMed  Article  Google Scholar 

  62. Terborgh J, Estes JA (2010) Trophic cascades and the changing dynamics of nature. Island Press, Washington

    Google Scholar 

  63. van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundström US (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13

    Article  Google Scholar 

  64. Walter DE (1988a) Predation and mycophagy by endostigmatid mites (Acariformes: Prostigmata). Exp Appl Acarol 4:159–166

    Article  Google Scholar 

  65. Walter DE (1988b) Nematophagy by soil arthropods from the Shortgrass Steppe, Chihuahuan Desert and Rocky Mountains of the Central United States. Agric Ecosyst Environ 24:307–316

    Article  Google Scholar 

  66. Walter DE, Ikonen EK (1989) Species, guilds, and functional groups: taxonomy and behavior in nematophagous arthropods. J Nematol 21:315–327

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Walter DE, Proctor HC (1998) Feeding behaviour and phylogeny: observations on early derivative Acari. Exp Appl Acarol 22:39–50

    Article  Google Scholar 

  68. Walter DE, Proctor HC (2013) Mites: ecology, evolution and behaviour, 2nd edn. Springer, Berlin

    Google Scholar 

  69. Walter DE, Hunt HW, Elliot ET (1988) Guilds or functional groups? An analysis of predatory arthropods from a shortgrass steppe soil. Pedobiologia 31:247–260

    Google Scholar 

  70. Wardle DA, Yeates GW (1993) The dual system of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs. Oecologia 93:303–306

    Article  Google Scholar 

  71. Wu T, Ayres E, Bardgett RD, Wall DH, Garey JR (2011) Molecular study of worldwide distribution and diversity of soil animals. Proc Natl Acad Sci USA 108:17720–17725

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. Yeates GW, Bongers T, DeGoede RGM, Freckman DW, Georgieva SS (1993) Feeding-habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yeates GW, Hawke MF, Rijkse WC (2000) Changes in soil fauna and soil conditions under Pinus radiata agroforestry regimes during a 25-year tree rotation. Biol Fert Soils 31:391–406

    Article  Google Scholar 

  74. Zunke U, Perry RN (1997) Nematodes: harmful and beneficial organisms. In: Benckiser G (ed) Fauna in soil ecosystems. Marcel Dekker, New York, pp 85–133

    Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG; MA 2461/8) and performed at the Georg August University Göttingen. We thank Garvin Schulz and Diana Grubert for help with the field work and we thank Christel Fischer and Simone Cesarz for the identification of mesofauna- and nematode-species from the Macfayden samples. We also thank the reviewers for the constructive criticism.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kerstin Heidemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heidemann, K., Ruess, L., Scheu, S. et al. Nematode consumption by mite communities varies in different forest microhabitats as indicated by molecular gut content analysis. Exp Appl Acarol 64, 49–60 (2014). https://doi.org/10.1007/s10493-014-9807-x

Download citation

Keywords

  • Food web
  • Predator–prey interaction
  • Bacterial energy channel
  • Grass
  • Litter
  • Moss