Skip to main content
Log in

Delimitation of a continuous morphological character with unknown prior membership: application of a finite mixture model to classify scapular setae of Abacarus panticis

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Unambiguous classification is a prerequisite for the study of polymorphism, but accurate delimitation of continuous morphological characters can be challenging. Finite mixture modeling is a rigorous and flexible approach for delimiting continuous variables with unknown prior membership, but its application to morphological studies remains limited. In this study, the lengths of scapular setae of the eriophyoid mite Abacarus panticis Keifer collected from 18 sites in Taiwan were used as an example to evaluate the eligibility of finite mixture models. We then tested the hypothesis that longer scapular setae can facilitate dispersal. Lastly, we investigate morphological variation in various seta morphs by geometric morphometric techniques. Finite mixture models can satisfactorily classify scapular setae of A. panticis into long and short seta morphs. Abacarus panticis of the long morph only occurred in five sites whereas the short seta morph existed in all study sites. Geometric morphometric analyses revealed a more elongated coxal area in individuals of long morph than in those of short morph. Because the short morph is more widespread in geographical distribution than the long morph, longer scapular setae seem unlikely a specialized adaptation for dispersal. Further studies should capitalize on the finite mixture model in the delimitation of continuous morphological characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Adamski Z, Bloszyk J, Gwiazdowicz DJ (2008) Individual variability of setal morphology in Nenteria pandioni (Acari: Mesostigmata: Uropodina): genetic variability or aging? Biologia 63:236–244

    Article  Google Scholar 

  • Almeida MT, Bisby FA (1984) A simple method for establishing taxonomic characters from measurement data. Taxon 33:405–409

    Article  Google Scholar 

  • Amrine JW Jr, Stasny TA, Flechtmann CHW (2003) Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Indira Publishing Houses, West Bloomfield

    Google Scholar 

  • Baran S, Altun A, Ayyildiz N, Kence A (2011) Morphometric analysis of oppiid mites (Acari, Oribatida) collected from Turkey. Exp Appl Acarol 54:411–420

    Article  PubMed  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Dawson R, Milne N (2012) Cranial size and shape variation in mainland and island populations of the quokka. J Zool 288:267–274

    Article  Google Scholar 

  • De Lillo E, Amrine JW Jr (2003) Catalogue of the Eriophyoidea of the world. Version Computer of Filemaker Pro 4.0

  • Du J (2002) Combined algorithms for constrained estimation of finite mixture distributions with grouped data and conditional data. Dissertation, McMaster University

  • Ezard T, Pearson P, Purvis A (2010) Algorithmic approaches to aid species’ delimitation in multidimensional morphospace. BMC Evol Biol 10:175

    Article  PubMed Central  PubMed  Google Scholar 

  • Flury B (1997) A first course in multivariate statistics. Springer, New York

  • Fonseca JRS, Cardoso MGMS (2007) Mixture-model cluster analysis using information theoretical criteria. Intell Data Anal 11:155–173

    Google Scholar 

  • Ford EB (1945) Polymorphism. Biol Rev 20:73–88

    Article  Google Scholar 

  • Galvão A, Melo JS, Monteiro V, Lima D, Moraes G, Gondim M (2012) Dispersal strategies of Aceria guerreronis (Acari: Eriophyidae), a coconut pest. Exp Appl Acarol 57:1–13

    Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

  • Idaszkin YL, Marquez F, Nocera AC (2013) Habitat-specific shape variation in the carapace of the crab Cyrtograpsus angulatus. J Zool 290:117–126

    Article  Google Scholar 

  • Jaworski A, Podlaski R (2012) Modelling irregular and multimodal tree diameter distributions by finite mixture models: an approach to stand structure characterization. J For Res 17:79–88

    Article  Google Scholar 

  • Kéry M, Royle JA, Schmid H (2005) Modeling avian abundance from replicated counts using binomial mixture models. Ecol Appl 15:1450–1461

    Article  Google Scholar 

  • Krantz GW (1973) Observations on the morphology and behavior of the filbert rust mite, Aculus comatus (Prostigmata: Eriophyoidea) in Oregon. Ann Entomol Soc Am 66:709–717

    Google Scholar 

  • Kuo CC, Wang CF, Tsai JI, Feng FL, Huang KW (2013) Altitudinal variation in body size in Abacarus panticis Keifer (Acari: Eriophyidae). Ecol Res 28:1091–1097

    Google Scholar 

  • Lawing AM, Polly PD (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280:1–7

    Article  Google Scholar 

  • Lindquist EE, Oldfield GN (1996) Evolution of eriophyoid mites in relation to their host plants. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mite—their biology, natural enemies and control. Elsevier, Amsterdam, pp 277–300

    Chapter  Google Scholar 

  • Macdonald P, Du J (2011) Mixdist: finite mixture distribution models. R package version 0.5-4. (http://CRAN.R-roject.org/package=mixdist)

  • Macdonald PDM, Pitcher TJ (1979) Age-groups from size-frequency data: a versatile and efficient method of analysing distribution mixtures. J Fish Res Board Can 36:987–1001

    Article  Google Scholar 

  • McLachlan GJ, Chang SU (2004) Mixture modeling for cluster analysis. Stat Methods Med Res 13:347–361

    Article  CAS  PubMed  Google Scholar 

  • McLachlan GJ, Peel D (2005) Finite mixture models. Wiley, New York

    Google Scholar 

  • Michalska K, Skoracka A, Navia D, Amrine J (2010) Behavioural studies on eriophyoid mites: an overview. Exp Appl Acarol 51:31–59

    Article  PubMed  Google Scholar 

  • Millar RB (1987) Maximum likelihood estimation of mixed stock fishery composition. Can J Fish Aquat Sci 44:583–590

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Navia D, de Moraes GJ, Querino RB (2006) Geographic variation in the coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae): a geometric morphometric analysis. Int J Acarol 32:301–314

    Article  Google Scholar 

  • Navia D, Gondim M Jr, Aratchige N, Moraes G (2013) A review of the status of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), a major tropical mite pest. Exp Appl Acarol 59:67–94

    Article  PubMed  Google Scholar 

  • Nuzzaci G, Alberti G (1996) Internal anatomy and physiology. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 101–150

    Chapter  Google Scholar 

  • Pearson K (1894) Contributions to the theory of mathematical evolution. Philos Trans R Soc Lond 185:71–110

    Article  Google Scholar 

  • Proctor HC (2003) Feather mites (Acari: Astigmata): ecology, behavior, and evolution. Annu Rev Entomol 48:185–209

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, (http://www.r-project.org)

  • Reid G, Sidwell K (2002) Overlapping variables in botanical systematic. In: MacLeod N, Forey PL (eds) Morphology, shape and phylogeny. Taylor & Francis, London, pp 53–66

    Chapter  Google Scholar 

  • Richtsmeier JT, Deleon VB, Lele SR (2002) The promise of geometric morphometrics. Yearb Phys Anthropol 45:63–91

    Article  Google Scholar 

  • Rohlf FJ (1998) On applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst Biol 47:147–158

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2010) TpsDig software for windows version 2.16. Department of Ecology and Evolution, State University of New York, New York. (http://life.bio.sunysb.edu/morph/)

  • Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59

    Google Scholar 

  • Roulin A (2004) The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev 79:815–848

    Article  PubMed  Google Scholar 

  • Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mite—their biology, natural enemies and control. Elsevier, Amsterdam, pp 329–366

    Chapter  Google Scholar 

  • Skulason S, Smith TB (1995) Resource polymorphisms in vertebrates. Trends Ecol Evol 10:366–370

    Article  CAS  PubMed  Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Article  Google Scholar 

  • Tixier MS (2012) Statistical approaches to assess intraspecific variations of morphological continuous characters: the case study of the family Phytoseiidae (Acari: Mesostigmata). Cladistics 28:489–502

    Article  Google Scholar 

  • Wang CF, Huang KW (2011) Taxonomy of eriophyoid mites (Acari: Trombidiformes) infesting Yushania niitakayamensis (Poaceae: Bambuseae) in Taiwan. Formosan Entomol 31:249–280

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier, San Diego

    Google Scholar 

  • Zhang L, Gove JH, Liu C, Leak WB (2001) A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands. Can J For Res 31:1654–1659

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to W.C. Yang for field collection and S. Huang, R. Wang, J. Jeng, S.K. Hu for organizing the data for analyses. The work was financially supported by National Science Council of Taiwan for T.J. Shen, National Taiwan University for C.C. Kuo, and National Museum of Natural Science of Taiwan for K.W. Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Wei Huang.

Additional information

Tsung-Jen Shen and Chi-Chien Kuo have contributed equally in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, TJ., Kuo, CC., Wang, CF. et al. Delimitation of a continuous morphological character with unknown prior membership: application of a finite mixture model to classify scapular setae of Abacarus panticis . Exp Appl Acarol 63, 361–375 (2014). https://doi.org/10.1007/s10493-014-9787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9787-x

Keywords

Navigation