Skip to main content

Natural infestation of Hydrochoerus hydrochaeris by Amblyomma dubitatum ticks

Abstract

Natural infestation of Amblyomma dubitatum in relation to individual specific attributes of Hydrochoerus hydrochaeris such as sex, body mass and body condition was analyzed. The anatomical distribution of A. dubitatum on H. hyrochaeris was also evaluated. Prevalence of adults and nymphs were significantly higher than prevalence of larvae. Non-significant differences in the infestation levels were found among host sex. Multiple regression analysis did not show any statistically significant association among the level of infestation with ticks and body mass and body condition of the host. All parasitic tick stages were collected in all five anatomical areas of the host, but they exhibited significant differences in feeding site preference. Factors associated to the host which determine the high levels of infestation with A. dubitatum could be assigned to a combination of population-level properties of the host as abundance, ubiquity and aggregation, rather than individual specific attributes related to body condition, body mass or sex.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aléssio FM, Dantas-Torres F, Siqueira DB, Lizée MH, Marvulo MFV, Martins TF, Labruna MB, Silva JCR, Mauffrey JF (2012) Ecological implications on the aggregation of Amblyomma fuscum (Acari: Ixodidae) on Trichomys laurentius (Rodentia: Echimyidae), in northeastern Brazil. Exp Appl Acarol 57:83–90

    PubMed  Article  Google Scholar 

  2. Almeida ATS, Daemon E, Faccini JLH (2001) Life cycle of female ticks of Amblyomma cooperi Nuttal & Warburton, 1908 (Acari: Ixodidae) under laboratory conditions. Arq Bras Med Vet Zootech 53:316–320

    Article  Google Scholar 

  3. Beldoménico PM, Lareschi M, Nava S, Mangold AJ, Guglielmone AA (2005) The parasitism of immature stages of Ixodes loricatus (Acari: Ixodida) on wild rodents in Argentina. Exp Appl Acarol 36:139–148

    PubMed  Article  Google Scholar 

  4. Brunner JL, Ostfeld RS (2008) Multiple causes of variable tick burdens on small-mammal hosts. Ecology 89:2259–2272

    PubMed  Article  Google Scholar 

  5. Chacón SC, Freitas LH, Barbieri FDS, Faccini JLH (2004) Relacao entre peso e número de ovos, larvas e ninfas ingurgitadas de Amblyomma cooperi Nuttal e Warburton, 1908 (Acari: Ixodidae) a partir de infestacoes experimentais em coelhos domésticos. Rev Bras Parasitol Vet 13:6–12

    Google Scholar 

  6. Corriale MJ, Orozco MM, Perez IJ (2013) Parámetros poblacionales y estado sanitario de carpinchos (Hydrochoerus hydrochaeris) en lagunas artificiales de los Esteros del Iberá. Mastozool Neotr 20:31–45

    Google Scholar 

  7. Daniels TJ, Fish D (1990) Spatial distribution and dispersal of unfed larval Ixodes dammini (Acari: Ixodidae) in Southern New York. Environ Entomol 19:1029–1033

    Google Scholar 

  8. Dantas-Torres F, Siqueira DB, Rameh-de-Albuquerque LC, Da Silva e Souza D, Zanotti AP, Ferreira DRA, Martins TF, De Senna MB, Wagner PGC, Da Silva MA, Marvulo MFV, Labruna MB (2010) Ticks infesting wildlife species in Northeastern Brazil with new host and locality records. J Med Entomol 47:1243–1246

    PubMed  Article  Google Scholar 

  9. Debárbora VN, Nava S, Cirignoli S, Guglielmone AA, Poi ASG (2012) Ticks (Acari: Ixodidae) parasitizing endemic and exotic wild mammals in the Esteros del Iberá wetlands, Argentina. Syst Appl Acarol 17:243–250

    Google Scholar 

  10. Debárbora VN, Mangold AJ, Oscherov EB, Guglielmone AA, Nava S (2014) Study of the life cycle of Amblyomma dubitatum (Acari: Ixodidae) based on field and laboratory data. Exp Appl Acarol. doi:10.1007/s10493-014-9767-1

  11. Devevey G, Brisson D (2012) The effect of spatial heterogenity on the aggregation of ticks on white-footed mice. Parasitology 139:915–925

    CAS  PubMed  Article  Google Scholar 

  12. Eberhardt AT, Costa SA, Marini MR, Racca A, Baldi CJ, Robles MR, Moreno PG, Beldomenico PM (2013) Parasitism and physiological trade-offs in stressed capybaras. PLoS ONE 8:e70382

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Guglielmone AA, Viñabal AE (1994) Claves morfológicas dicotómicas e información ecológica para la identificación de garrapatas del género Amblyomma Koch, 1844 de la Argentina. Rev Invest Agrop 25:39–67

    Google Scholar 

  14. Hughes VL, Randolph SE (2001) Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: a force for aggregated distributions of parasites. J Parasitol 87:49–54

    CAS  PubMed  Article  Google Scholar 

  15. Hugot JP (2006) Coevolution of macroparasites and their small mammalian hosts: cophylogeny and coadaptation. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer, Tokyo, pp 257–276

    Chapter  Google Scholar 

  16. Joan T (1930) El amblyomma (sic) de Cooper y demás garrapatas de los carpinchos. 5ª Reunión de la Sociedad Argentina de Patología Regional Norte, Jujuy, Argentina 2:1168–1179

  17. Jokela J, Schmid-Hempel P, Rigby MC (2000) Dr. Pangloss restrained by the Red Quenn—steps towards a unified defence theory. Oikos 89:267–274

    Article  Google Scholar 

  18. Kiffner C, Lodige C, Alings M, Vor T, Ruhe F (2011) Attachment site selection of ticks on roe deer, Capreolus capreolus. Exp Appl Acarol 53:79–94

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Klein SL (2004) Hormonal and immunological mechanism mediating sex differences in parasite infection. Parasite Inmunol 26:247–264

    CAS  Article  Google Scholar 

  20. Krasnov BR, Shenbrot GI, Khokhlova IS, Degen AA (2004) Flea species richness and parameters of host body, host geography and host “milieu”. J Anim Ecol 73:1121–1128

    Article  Google Scholar 

  21. Krasnov BR, Morand S, Hawlena H, Khokhlova IS, Shenbrot GI (2005) Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217

    PubMed  Article  Google Scholar 

  22. Krasnov BR, Stanko M, Morand S (2007) Host community structure and infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. Oecologia 154:185–194

    PubMed  Article  Google Scholar 

  23. Krebs CJ (1999) Ecological methodology. Wesley Longman, New York

    Google Scholar 

  24. Krist AC, Jokela J, Wiehn J, Lively CM (2004) Effects of host conditions on susceptibility to infection, parasite developmental rate, and parasite transmission in a snail-trematode interactions. J Evol Biol 17:33–40

    CAS  PubMed  Article  Google Scholar 

  25. Labruna MB, Pinter A, Texeira RHF (2004) Life cycle of Amblyomma cooperi (Acari: Ixodidae) using capybaras (Hydrochaeris hydrochaeris) as hosts. Exp Appl Acarol 32:79–88

    PubMed  Article  Google Scholar 

  26. Lutermann H, Medger K, Horak IG (2012) Effects of life-history traits on parasitism in a monogamous mammal, the eastern rock sengi (Elephantulus myurus). Naturwissenschaften 99:103–110

    CAS  PubMed  Article  Google Scholar 

  27. Martins TF, Onofrio VC, Barros-Battesti DM, Labruna MB (2010) Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick-borne Dis 1:75–99

    PubMed  Article  Google Scholar 

  28. Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    CAS  PubMed  Article  Google Scholar 

  29. Mooring MS, McKenzie AA, Hart BL (1996) Role of sex and breeding status in grooming and total tick load impala. Behav Ecol Sociobiol 39:259–266

    Article  Google Scholar 

  30. Nava S, Venzal JM, Labruna MB, Mastropaolo M, González EM, Mangold AJ, Guglielmone AA (2010) Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum. Exp Appl Acarol 51:335–351

    PubMed  Article  Google Scholar 

  31. Neiff JJ, Poi de Neiff ASG (2006) Situación ambiental en la ecorregión Iberá. In: Brown A, Martinez Ortiz U, Acerbi M, Corcuera J (eds) La situación ambiental Argentina. Fundación Vida Silvestre, Buenos Aires, pp 177–184

  32. Pacala SW, Dobson AP (1988) The relation between the number of parasites/host and host age: population dynamics causes and maximum likelihood estimation. Parasitology 96:197–210

    PubMed  Article  Google Scholar 

  33. Patterson BD, Dick CW, Dittmar K (2008) Parasitism by bat flies (Diptera: Streblidae) on neotropical bats: effects of host body size, distribution, and abundance. Parasitol Res 103:1091–1100

    PubMed  Article  Google Scholar 

  34. Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson PJ (2003) Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol 33:909–917

    PubMed  Article  Google Scholar 

  35. Pilosof S, Lareschi M, Krasnov BR (2012) Host body microcosm and ectoparasite infracommunities: arthropod ectoparasites are not spatially segregated. Parasitology 139:1739–1748

    PubMed  Article  Google Scholar 

  36. Poulin R (1993) The disparity between observed and uniform distributions: a new look at parasite aggregation. Int J Parasitol 23:937–944

    CAS  PubMed  Article  Google Scholar 

  37. Poulin R (2007) Evolutionary ecology of parasites. Princenton University Press, New Jersey

    Google Scholar 

  38. Poulin R, George-Nascimento M (2007) The scaling of total biomass with host body mass. Int J Parasitol 37:359–364

    PubMed  Article  Google Scholar 

  39. Randolph SE, Steele GM (1985) An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (L.) (Acari: Ixodidae). II. The dynamics of the tick-host interaction. Bull Ent Res 75:501–518

    Article  Google Scholar 

  40. Rosá R, Rizzoli A, Ferrari N, Pugliese A (2006) Models for host-macroparasite interactions in micromammals. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and Macroparasites: from evolutionary ecology to management. Springer, Tokyo, pp 319–348

    Chapter  Google Scholar 

  41. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232

    PubMed  Article  Google Scholar 

  42. Shaw DJ, Grenfell BT, Dobson AP (1998) Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117:597–610

    PubMed  Article  Google Scholar 

  43. Wilson K, Grenfell BT, Shaw DJ (1996) Analysis of aggregated parasite distributions: a comparison of methods. Funct Ecol 10:592–601

    Article  Google Scholar 

  44. Zar JH (1999) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We are grateful to INTA, Asociación Cooperadora INTA Rafaela, and CONICET for providing financial support. Fieldwork was conducted with the support of The Conservation Land Trust Argentina. We thank Sebastián Cirignoli and Oscar Warnke for assisting with fieldwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Santiago Nava.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Debárbora, V.N., Mangold, A.J., Eberhardt, A. et al. Natural infestation of Hydrochoerus hydrochaeris by Amblyomma dubitatum ticks. Exp Appl Acarol 63, 285–294 (2014). https://doi.org/10.1007/s10493-014-9768-0

Download citation

Keywords

  • Amblyomma dubitatum
  • Hydrochoerus hydrochaeris
  • Host-parasite relationship