Skip to main content

Advertisement

Log in

Pest management systems affect composition but not abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

An Erratum to this article was published on 24 January 2014

Abstract

We examined the faunal composition and abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards under different pest management systems in Hungary. A total of 30 apple orchards were surveyed, including abandoned and organic orchards and orchards where integrated pest management (IPM) or broad spectrum insecticides (conventional pest management) were applied. A total of 18 phytoseiid species were found in the canopy of apple trees. Species richness was greatest in the organic orchards (mean: 3.3 species/400 leaves) and the least in the conventional orchards (1.4), with IPM (2.1) and abandoned (2.7) orchards showing intermediate values. The phytoseiid community’s Rényi diversity displayed a similar pattern. However, the total phytoseiid abundance in the orchards with different pest management systems did not differ, with abundance varying between 1.8 and 2.6 phytoseiids/10 leaves. Amblyseius andersoni, Euseius finlandicus, and Typhlodromus pyri were the three most common species. The relative abundance of A. andersoni increased with the pesticide load of the orchards whereas the relative abundance of E. finlandicus decreased. The abundance of T. pyri did not change in the apple orchards under different pest management strategies; regardless of the type of applied treatment, they only displayed greater abundance in five of the orchards. The remaining 15 phytoseiid species only occurred in small numbers, mostly from the abandoned and organic orchards. We identified a negative correlation between the abundance of T. pyri and the other phytoseiids in the abandoned and organic orchards. However, we did not find any similar link between the abundance of A. andersoni and E. finlandicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbar Z, Tixier MS, Kreiter S (2007) Assessment of pesticide susceptibility for Typhlodromus exhilaratus and Typhlodromus phialatus strains (Acari: Phytoseiidae) from vineyards in the south of France. Exp Appl Acarol 42:95–105

    Article  CAS  PubMed  Google Scholar 

  • Blommers LHM (1994) Integrated pest management in European apple orchards. Annu Rev Entomol 39:213–241

    Article  Google Scholar 

  • Boller EF, Remund U, Candolfi MP (1988) Hedges as potential sources of Typhlodromus pyri, the most important predatory mite in vineyards of Northern Switzerland. Entomophaga 33:249–255

    Article  Google Scholar 

  • Bonafos R, Serrano E, Auger P, Kreiter S (2007) Resistance to deltamethrin, lambda-cyhalothrin and chlorpyriphos-ethyl in some populations of Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari: Phytoseiidae) from vineyards in the south-west of France. Crop Prot 26:169–172

    Article  CAS  Google Scholar 

  • Bozai J (1980) New data to the knowledge of the predatory mites in Hungary. Folia Entomol Hung 41:193–194

    Google Scholar 

  • Broufas GD, Koveos DS (2000) Effect of different pollens on development, survivorship and reproduction of Euseius finlandicus (Acari: Phytoseiidae). Environ Entomol 29:743–749

    Google Scholar 

  • Croft BA, Shearer P, Fields GJ, Riedl HW (1990) Distribution of Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Parasitiformes: Phytoseiidae) in apple orchards of the Hood River Valley, Oregon. Can Entomol 122:5–14

    Article  Google Scholar 

  • Duso C (1992) Biological control of tetranychid mites in peach orchards of northern Italy: role of Amblyseius andersoni (Chant) and Amblyseius finlandicus (Oud.) (Acari: Phytoseiidae). Acta Phytopath Entomol Hung 27:211–217

    Google Scholar 

  • Duso C, Pasini M (2003) Distribution of the predatory mite Amblyseius andersoni (Acari: Phytoseiidae) on different apple cultivars. J Pest Sci 76:33–40

    Google Scholar 

  • Duso C, Pasqualetto C, Camporese P (1991) Role of the predatory mites Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. II. Minimum releases of A. aberrans and T. pyri to control spider mite populations (Acari, Tetranychidae). J Appl Entomol 112:298–308

    Article  Google Scholar 

  • Duso C, Camporese P, Van der Geest LPS (1992) Toxicity of a number of pesticides to strains of Typhlodromus pyri and Amblyseius andersoni (Acari: Phytoseiidae). Entomophaga 37:363–372

    Article  CAS  Google Scholar 

  • Duso C, Fontana P, Malagnini V (2003) Diversity and abundance of phytoseiid mites (Acari: Phytoseiidae) in vineyards and the surrounding vegetation in northeastern Italy. Acarol 44:31–47

    Google Scholar 

  • Duso C, Fanti M, Pozzebon A, Angeli G (2009) Is the predatory mite Kampimodromus aberrans a candidate for the control of phytophagous mites in European apple orchards? Biocontrol 54:369–382

    Article  Google Scholar 

  • El-Borolossy M, Fischer-Colbrie P (1989) Untersuchungen zum Artenspektrum von Raubmilben im österreichischen Obst-und Weinbau. Pflanzenschutzber 50:49–63

    Google Scholar 

  • Fischer-Boel M (2008) Regulations 889/2008 Annexes I and II. Offic J Europ Union 18 Sept 2008 pp 34-37

  • Fournier D, Pralavorio M, Berge JB, Cuany A (1985) Pesticide resistance in Phytoseiidae. In: Helle W, Sabelis MW (eds) World crop pest. Spider mites Their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam, pp 423–432

    Google Scholar 

  • Franck L, Höhn H, Höpli HU (2008) Artenzusammensetzung der Raubmilben im Ostschweizer Apfelanbau. Schweiz Z Obst Weinbau 15:7–10

    Google Scholar 

  • Gambaro PI (1994) The importance of humidity in the development and spread of Amblyseius andersoni Chant (Acarina, Phytoseiidae). Boll Zool Agrar Bachic 26:241–248

    Google Scholar 

  • Gambaro PI (1988) Natural alternative food for Amblyseius andersoni Chant (Acarina: Phytoseiidae) on plants without prey. Redia 71:161–171

    Google Scholar 

  • Galli P, Epp P (1995) Untersuchungen zum Auftreten von Typhlodromus pyri Scheuten und anderen Raubmilben in Apfelanlagen von Baden-Württemberg. Gesunde Pflanz 47:54–59

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hardman JM, Rogers ML (1991) Effects of temperature and prey density on survival, development, and feeding rates of immature Typhlodromus pyri (Acari: Phytoseiidae). Environ Entomol 20:1089–1096

    Google Scholar 

  • Hardman JM, Franklin JL, Beaulieu F, Bostanian NJ (2007) Effects of acaricides, pyrethroids and predator distributions on populations of Tetranychus urticae in apple orchards. Exp Appl Acarol 43:235–253

    Article  CAS  PubMed  Google Scholar 

  • Hegyi T, Jenser G (2002) Phytoseiid mites in apple orchards on sandy soils in Hungary. In: Proceeding symposium IOBC/WPRS workshop arthropod pests in integrated pome fruit production, Wien 11–14 March 2002 p 26

  • Hluchý M, Pospísil Z, Zacharda M (1991) Phytophagous and predatory mites (Acari: Tetranychidae, Eriophyidae, Phytoseiidae, Stigmaeidae) in South Moravian vineyards, Czechoslovakia, treated with various types of chemicals. Exp Appl Acarol 13:41–52

    Article  Google Scholar 

  • Karg W (1990) Eine neue Raubmilbenart der Anthoseius-georgicus-Gruppe (Acarina, Phytoseiidae Berlese). Zool Jb Syst 117:41–45

    Google Scholar 

  • Karg W (1993) Phytoseioidea. In: Karg W (ed) Raubmilben (Die Tierwelt Deutschlands). Gustav Fischer Verlag, Jena, pp 170–254

    Google Scholar 

  • Komlovszky SZI, Jenser G (1987) The frequent occurrence of the predatory mites Amblyseius finlandicus Oudemans and Phytoseius plumifer Canestrini et Fanzago on fruit trees. Növvéd 23:193–201 (in Hungarian)

    Google Scholar 

  • Kostiainen T, Hoy MA (1994) Variability in resistance to organophosphorous insecticides in field-collected colonies of Amblyseius finlandicus (Oudemans) (Acari, Phytoseiidae). J Appl Entomol 117:370–379

    Article  Google Scholar 

  • Kropczyńska D, Tuovinen T (1988) Occurrence of phytoseiid mites (Acari: Phytoseiidae) on apple trees in Finland. Annal Agric Fenn 27:305–314

    Google Scholar 

  • Kuijpers LAM (1992) A review of the selectivity of Dimilin in orchards. Acta Phytopath Entomol Hung 27:375–384

    CAS  Google Scholar 

  • Markó V, Jenser G, Mihályi K, Hegyi T, Balázs K (2012) Flowers for better pest control? Effects of apple orchard groundcover management on mites (Acari), leafminers (Lepidoptera, Scitellidae), and fruit pests. Biocontrol Sci Technol 22:39–60

    Article  Google Scholar 

  • Markoyiannaki-Printzioui D, Papaioannou-Souliotis P, Zeginis G, Giatropoulos C (2000) Observations on acarofauna in four apple orchards of Central Greece. I. Incidence of pedoclimatic conditions and agricultural techniques on phytoseiid mites (Acari: Phytoseiidae). Acarol 41:109–126

    Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Version 6.0. MjM Software, Gleneden Beach, Oregon

  • Miklavc J, Milevoj L (2007) Survey of predatory mites of family Phytoseiidae Berlese in apple orchards in northeast part of Slovenia. 8th Slovenian Conference on Plant Prot., Radenci, 6-7 March 2007 pp 212-219

  • Pozzebon A, Duso C, Pavanetto E (2002) Side effects of some fungicides on phytoseiid mites (Acari, Phytoseiidae) in north-Italian vineyards. J Pest Sci 75:132–136

    Google Scholar 

  • Poletti M, Maia AHN, Omoto C (2007) Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biolog Control 40:30–36

    Article  CAS  Google Scholar 

  • Praslička J, Barteková A, Schlarmannová J, Malina R (2009) Predatory mites of the Phytoseiidae family in integrated and ecological pest management systems in orchards in Slovakia. Biologia 64:959–961

    Article  Google Scholar 

  • Schausberger P, Croft BA (2000) Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Exp Appl Acarol 24:709–725

    Google Scholar 

  • Slone DH, Croft BA (2001) Species association among predaceous and phytophagous apple mites (Acari: Eriophyidae, Phytoseiidae, Stigmaeidae, Tetranychidae). Exp Appl Acarol 25:109–126

    Article  CAS  PubMed  Google Scholar 

  • Solomon MG, Cross JV, Fitzgerald JD, Campbell CAM, Jolly RL, Olszak RW, Niemczyk E, Vogt H (2000) Biocontrol of pests of apples and pears in northern and central Europe—3. Predators. Biocontrol Sci Technol 10:91–128

    Article  Google Scholar 

  • Sölva J, Zöschg M, Hluchý M, Zacharda M (1997) Predatory phytoseiid mites (Acari: Mesostigmata) in vineyards and fruit orchards in Southern Tyrol. J Pest Sci 70:17–19

    Google Scholar 

  • Szabó Á, Kóródi I, Tempfli B, Pénzes B (2010) Phytoseiid mites in the Hungarian vineyards (Acari: Phytoseiidae). Acta Phytopath Entomol Hung 45:337–347

    Article  Google Scholar 

  • Szabó Á, Gál jr Cs, Pénzes B (2013) The occurrence of predatory mites in the Kunság wine region in Hungary. Növvéd 49:193–197 (in Hungarian)

    Google Scholar 

  • Tichy L, Chytry M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818

    Article  Google Scholar 

  • Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veget Sci 6:283–290

    Article  Google Scholar 

  • Tuovinen T (1994) Influence of surrounding trees and bushes on the phytoseiid mite fauna on apple orchard trees in Finland. Agric Ecosyst Environ 50:39–47

    Article  Google Scholar 

  • Tuovinen T, Rokx JAH (1991) Phytoseiid mites (Acari: Phytoseiidae) on apple trees and in surrounding vegetation in southern Finland. Densities and species composition. Exp Appl Acarol 12:35–46

    Article  Google Scholar 

  • Vargha A (2007) The statistical menu system of RopStat. http://www.ropstat.com/. Accessed 17 Aug 2012

  • Zacharda M (1991) Typhlodromus pyri Scheuten, 1857 (Acari: Phytoseiidae), a unique predator for biological control of phytophagous mites in Czechoslovakia. Mod Acarol 1:205–210

    Google Scholar 

  • Zacharda M (2001) Predatory phytoseiid mites (Acari: Phytoseiidae) as bioindicators of stress impact on a farmland and butresses of the farmland revival. Ekológia 20:47–56

    Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Gábor Jenser for all the help he provided in the examinations. We would also like to thank Ildikó Csamangó, Lajos Földes, Dr. Józsefné Molnár, Katinka Nyisztor, Zsófia Pálinkás, Róbert Redeczki, László Somay and Georgina Szava for their help in collecting and processing the samples and to the anonymous reviewers for their constructive comments. The present research was supported by OTKA (K75856 and NN 101940) and partially by TÁMOP (4.2.1.B-09/1/KMR-2010-0005, 4.2.2.B-10/1-2010-0023 and 4.2.4.A/1-11-1-2012-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Árpád Szabó.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, Á., Pénzes, B., Sipos, P. et al. Pest management systems affect composition but not abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards. Exp Appl Acarol 62, 525–537 (2014). https://doi.org/10.1007/s10493-013-9752-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9752-0

Keywords

Navigation