Advertisement

Experimental and Applied Acarology

, Volume 62, Issue 1, pp 19–32 | Cite as

Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet

  • Karen Muñoz-Cárdenas
  • Luz Stella Fuentes
  • R. Fernando Cantor
  • C. Daniel Rodríguez
  • Arne JanssenEmail author
  • Maurice W. Sabelis
Article

Abstract

Generalist predators have the potential advantage to control more than one pest and to be more persistent than specialist predators because they can survive on different foods. Moreover, their population growth rate may be elevated when offered a mixture of prey species. We studied a generalist predatory mite Balaustium sp. that shows promise for biological control of thrips and whiteflies in protected rose cultures in Colombia. Although starting its life in the soil, this predator makes excursions onto plants where it feeds on various arthropods. We quantified life history parameters of the predator, offering high densities of three pest species: first-instar larvae of Frankliniella occidentalis, eggs of Trialeurodes vaporariorum and Tetranychus urticae, either alone or in combination. The predators completed their life cycle on each diet. The egg-to-egg period was c. 2 months. All eggs were laid in one batch in 1–2 days, indicating a pronounced semelparous reproduction pattern. In general, females reproduced earlier and laid more eggs on mixed diets, and these early reproducers consequently had higher population growth rates than late reproducers. The best diet in terms of egg-to-egg period and juvenile survival was the combination of eggs from whiteflies and spider mites. Spider mite eggs alone and western flower thrips larvae alone were the worst diets. It remains to be investigated whether mixed diets promote the population growth rate of Balaustium sufficiently for biocontrol of whiteflies and thrips in the presence of alternative prey, such as spider mites, to become effective.

Keywords

Life cycle Life table parameters Big-bang reproduction Mixed diet Semelparity 

Notes

Acknowledgments

We thank Paul van Rijn for comments and especially for some pertinent suggestions with respect to Fig. 5, and two anonymous reviewers for comments. KM was supported by Colciencias (Colombia) (Programa “Francisco José de Caldas” 2011).

Supplementary material

10493_2013_9727_MOESM1_ESM.pdf (7.6 mb)
Supplementary material 1 (PDF 7,759 kb)
10493_2013_9727_MOESM2_ESM.pdf (19 kb)
Supplementary material 2 (PDF 19 kb)

References

  1. Bakker FM, Sabelis MW (1989) How larvae of Thrips tabaci reduce the attack success of phytoseiid predators. Entomol Exp Appl 50:47–51CrossRefGoogle Scholar
  2. Blommers LHM, van Arendonk RCM (1979) The profit of senescence in phytoseiid mites. Oecologia 44:87–90CrossRefGoogle Scholar
  3. Bruce WA, Wrensch DL (1990) Reproductive potential, sex ratio, and mating efficiency of the straw itch mite (Acari: Pyemotidae). J Econ Entomol 83:384–391Google Scholar
  4. Cadogan B, Laing J (1977) A technique for rearing the predaceous mite Balaustium putmani (Acarina: Erythraeidae), with notes on its biology and life history. Can Entomol 109:1535–1544CrossRefGoogle Scholar
  5. Carey JR (1993) Applied demography for biologists, with special emphasis on insects. Oxford University Press, New York, USAGoogle Scholar
  6. Caswell H (1982) Life history theory and the equilibrium status of populations. Am Nat 120:317–339CrossRefGoogle Scholar
  7. Chang GC, Kareiva P (1999) The case for indigenous generalists in biological control. In: Hawkins BA, Cornell HV (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 103–115CrossRefGoogle Scholar
  8. Charnov EL, Schaffer WM (1973) Life-history consequences of natural selection: Cole’s result revisited. Am Nat 107:791–793CrossRefGoogle Scholar
  9. Childers CC, Rock GC (1981) Observations on the occurrence and feeding habits of Balaustium pulmani (Acari: Erythraeidae) in North Carolina apple orchards. Int J Acarol 7:63–68CrossRefGoogle Scholar
  10. Chiverton PA (1986) Predator density manipulation and its effects on populations of Rhopalosiphum padi (Hom, Aphididae) in spring barley. Ann Appl Biol 109:49–60CrossRefGoogle Scholar
  11. Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29:103–137PubMedCrossRefGoogle Scholar
  12. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  13. Diamond JM (1982) Big-bang reproduction and ageing in male marsupial mice. Nature 298:115–116PubMedCrossRefGoogle Scholar
  14. Faraji F, Janssen A, Sabelis MW (2002a) The benefits of clustering eggs: the role of egg predation and larval cannibalism in a predatory mite. Oecologia 131:20–26CrossRefGoogle Scholar
  15. Faraji F, Janssen A, Sabelis MW (2002b) Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecol Entomol 27:660–664CrossRefGoogle Scholar
  16. Getiva J, Acosta A (2004) Taxonomía de ácaros asociados a cultivos de flores. Asocolflores 66:59–68Google Scholar
  17. Halliday R (2005) Predatory mites from crops and pastures in South Africa: potential natural enemies of redlegged earth mite Halotydeus destructor (Acari: Penthaleidae). Zootaxa 1079:11–64Google Scholar
  18. Harwood JD, Phillips SW, Lello J, Sunderland KD, Glen DM, Bruford MW, Harper GL, Symondson WOC (2009) Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol Contr 51:499–506CrossRefGoogle Scholar
  19. Hassell MP, May RM (1986) Generalist and specialist natural enemies in insect predator-prey interactions. J Anim Ecol 55:923–940CrossRefGoogle Scholar
  20. Hautekeete NC, Piquot Y, Van Dijk H (2001) Investment in survival and reproduction along a semelparity-iteroparity gradient in the Beta species complex. J Evol Biol 14:795–804CrossRefGoogle Scholar
  21. Hayes JL (1985) The predator-prey interaction of the mite Balaustium sp. and the pierid butterfly Colias alexandra. Ecology 66:300–303CrossRefGoogle Scholar
  22. Hedges BZ, Rosselot AE, Tomko PM, Yoder JA, Benoit JB (2012) High temperature and dehydration tolerance of the red velvet mite, Balaustium sp. (Erythraeidae), permit the exploitation of extremely hot, dry microhabitats. Int J Acarol 38:89–95CrossRefGoogle Scholar
  23. Hosmer DWJ, Lemeshow S (1999) Applied survival analysis. Regression modeling of time to event data. Wiley-Interscience Publication, New YorkGoogle Scholar
  24. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363CrossRefGoogle Scholar
  25. Janssen A, Faraji F, van der Hammen T, Magalhães S, Sabelis MW (2002) Interspecific infanticide deters predators. Ecol Lett 5:490–494CrossRefGoogle Scholar
  26. Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis MW (2006) Intraguild predation usually does not disrupt biological control. In: Brodeur J, Boivin G (eds) Trophic and guild interactions in biological control, vol 3. Springer, Dordrecht, pp 21–44CrossRefGoogle Scholar
  27. Kaliszewski M, Athias-Binche F, Lindquist EE (1995) Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Adv Parasitol 35:335–367PubMedCrossRefGoogle Scholar
  28. Magalhães S, Janssen A, Montserrat M, Sabelis MW (2005) Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proc R Soc B 272:1929–1933PubMedCrossRefGoogle Scholar
  29. Makol J, Arijs Y, Wäckers FL (2012) A new species of Balaustium von Heyden, 1826 (Acari: Actinotrichida, Erythraeidae) from Spain. Zootaxa 3178:1–21Google Scholar
  30. Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Contr 44:372–379CrossRefGoogle Scholar
  31. Messelink G, van Maanen R, van Holstein-Saj R, Sabelis MW, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55:387–398CrossRefGoogle Scholar
  32. Messelink GJ, Bloemhard CMJ, Cortes JA, Sabelis MW, Janssen A (2011) Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biol Contr 57:246–252CrossRefGoogle Scholar
  33. Messelink GJ, Sabelis MW, Janssen A (2012) Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Larramendy ML, Soloneski S (eds) Integrated pest management and pest control—current and future tactics. InTech, Rijeka, Croatia, pp 191–214Google Scholar
  34. Montserrat M, Bas C, Magalhaes S, Sabelis MW, de Roos AM, Janssen A (2007) Predators induce egg retention in prey. Oecologia 150:699–705PubMedCrossRefGoogle Scholar
  35. Muñoz K, Fuentes L, Cantor F, Rodríguez D, Cure JR (2009) Feeding preferences of the mite Balaustium sp. under controlled conditions. Agronomía Colombiana 27:95–103Google Scholar
  36. Murdoch WW (1994) Population regulation in theory and practice. Ecology 75:271–287CrossRefGoogle Scholar
  37. Murdoch WW, Scott MA, Ebsworth P (1984) Effects of the general predator, Notonecta (Hemiptera) upon a fresh-water community. J Anim Ecol 53:791–808CrossRefGoogle Scholar
  38. Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366CrossRefGoogle Scholar
  39. Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291PubMedCrossRefGoogle Scholar
  40. Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68PubMedCrossRefGoogle Scholar
  41. Oelbermann K, Scheu S (2002) Effects of prey type and mixed dites on survival, growth and development of a generalist predator, Pardosa lugubris (Araneae : Lycosidae). Basic Appl Ecol 3:285–291CrossRefGoogle Scholar
  42. Pozzebon A, Duso C (2008) Grape downy mildew Plasmopara viticola, an alternative food for generalist predatory mites occurring in vineyards. Biol Contr 45:441–449CrossRefGoogle Scholar
  43. Putman WL (1969) Life history and behavior of Balaustium putmani (Acarina: Erythraeidae). Ann Entomol Soc Am 63:76–81Google Scholar
  44. Ranta E, Tesar D, Kaitala V (2002) Environmental variability and semelparity vs. iteroparity as life histories. J Theor Biol 217:391–396CrossRefGoogle Scholar
  45. Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New YorkGoogle Scholar
  46. Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Annu Rev Entomol 43:421–447PubMedCrossRefGoogle Scholar
  47. Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449CrossRefGoogle Scholar
  48. Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents—theory and evidence. Biol Contr 5:303–335CrossRefGoogle Scholar
  49. Sabelis MW (1991) Life-history evolution of spider mites. In: Schuster R, Murphy PW (eds) The Acari. Reproduction, development and life-history strategies. Chapman & Hall, London, pp 23–49Google Scholar
  50. Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) World crop pests, vol 6. Elsevier, Amsterdam, pp 329–366Google Scholar
  51. Sabelis MW, Janssen A (1994) Evolution of life history patterns in the Phytoseiidae. In: Houck MA (ed) Mites: ecological and evolutionary analyses of life history patterns. Chapman & Hall, New York, USA, pp 70–98Google Scholar
  52. Scheu S (2001) Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl Ecol 2:3–13CrossRefGoogle Scholar
  53. Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D, Lestari AS, Pajarningsih and Sartanto (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988Google Scholar
  54. Sonenshine DE (1991) Biology of ticks. Oxford University Press, New YorkGoogle Scholar
  55. Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47Google Scholar
  56. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  57. Symondson WOC, Sutherland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594PubMedCrossRefGoogle Scholar
  58. Toft S, Wise DH (1999) Growth, development, and survival of a generalist predator fed single- and mixed-species diets of different quality. Oecologia 119:191–197CrossRefGoogle Scholar
  59. Torrado E, Pérez M, Cure J, García M, Echeverri C (2001) Evaluación de sistemas de control biológico utilizados comercialmente en Europa para el control de plagas de rosa bajo invernadero, en la Sabana de Bogotá. Asocolflores 61:34–45Google Scholar
  60. van Rijn PCJ, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679CrossRefGoogle Scholar
  61. Welbourn WC (1983) Potential use of trombidoid and erythraeoid mites as biological control agents of insect pests. In: Hoy MA, Cunningham GL, Knutson L (eds) Biological control of pests and mites. University of California, Berkeley, pp 103–140Google Scholar
  62. Welbourn WC, Jennings DT (1991) Two new species of Erythraeidae (Acari, Prostigmata) associated with the spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera, Tortricidae), in Maine. Can Entomol 123:567–580CrossRefGoogle Scholar
  63. Young TP (1981) A general model of comparative fecundity for semelparous and iteroparous life histories. Am Nat 118:27–36Google Scholar
  64. Zeineddine M, Jansen VAA (2009) To age, to die: parity, evolutionary tracking and Cole’s paradox. Evolution 63:1498–1507PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Karen Muñoz-Cárdenas
    • 1
    • 3
  • Luz Stella Fuentes
    • 2
  • R. Fernando Cantor
    • 3
  • C. Daniel Rodríguez
    • 3
  • Arne Janssen
    • 1
    Email author
  • Maurice W. Sabelis
    • 1
  1. 1.IBED, Population BiologyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Centro de BiosistemasUniversidad Jorge Tadeo LozanoChía, CundinamarcaColombia
  3. 3.Programa de Biología Aplicada, Facultad de Ciencias BásicasUniversidad Militar Nueva GranadaCajicáColombia

Personalised recommendations