Advertisement

Experimental and Applied Acarology

, Volume 59, Issue 4, pp 447–462 | Cite as

Methods for rearing scutacarid mites (Acari, Heterostigmatina) and the influence of laboratory cultures on morphometric variables

  • Julia Jagersbacher-Baumann
  • Ernst Ebermann
Article

Abstract

Mites of the soil inhabiting family Scutacaridae (Heterostigmatina) are distributed throughout the world, but only rarely found in high densities. Larvae and males are extremely difficult to detect and identify in soil samples. Laboratory cultures are necessary to describe these life stages, detect female dimorphism, or carry out other kinds of biological study. The present paper gives an historical overview of the methods applied for rearing scutacarids, demonstrating that thus far the use of glass tubes stuffed with soil is the most valuable method. Morphometric comparisons between field collected and laboratory reared specimens of two scutacarid species, Scutacarus acarorum Goeze and Heterodispus foveatus Jagersbacher-Baumann and Ebermann, revealed a clear influence of environmental conditions on the phenotype of laboratory-reared mites. Size correction minimized the environmentally induced variation and should therefore be mandatory for classification of species based on morphometric variables. Taxonomic assignment of laboratory reared scutacarids is possible, but must be done with extreme caution.

Keywords

Scutacaridae Laboratory cultures Rearing methods Morphometrics 

Notes

Acknowledgments

We are grateful to Dr. Steven Weiss for giving linguistic advice and helpful comments on our manuscript.

References

  1. Binns ES (1979) Scutacarus baculitarsus Mahunka (Acarina, Scutacaridae) phoretic on the mushroom phorid fly Megaselia halterata (Wood). Acarologia 21:91–107Google Scholar
  2. Cross EA, Bohart GE (1992) The biology of Imparipes apicola (Acari: Scutacaridae) and its relationships to the Alkali Bee, Nomia melanderi (Hymenoptera: Halictidae), and to Certain Fungi in the Bee Cell ecosystem. J Kansas Entomol Soc 65(2):157–173Google Scholar
  3. Delfinado MD, Baker EW (1976) New species of Scutacaridae (Acarina) associated with insects. Acarologia 18(2):264–301Google Scholar
  4. Domsch KH, Gams W, Anderson TH (1993) Compendium of soil fungi, vol 1. IHW-Verlag, EchingGoogle Scholar
  5. Ebermann E (1982a) Fortpflanzungsbiologische Studien an Scutacariden (Acari, Trombidiformes). Zool Jahrb (Syst) 109:98–116Google Scholar
  6. Ebermann E (1982b) Zuchtversuche und morphologische Untersuchungen an heimischen Milben (Acari, Scutacaridae). Mitt Naturwiss Ver Steiermark 112:155–165Google Scholar
  7. Ebermann E (1988) Imparipes (Imparipes) pselaphidorum n. sp., a new scutacarid species phoretic upon African beetles (Acari, Scutacaridae; Coleoptera, Pselaphidae). Acarologia 29(1):35–42Google Scholar
  8. Ebermann E (1990) Taxonomic consequences of the polymorphism found in scutacarids (Acari, Scutacaridae). Entomol Mitt Zool Mus Hamburg 10:29–42Google Scholar
  9. Ebermann E (1991a) Das Phänomen Polymorphismus in der Milbenfamilie Scutacaridae (Acari, Heterostigmata, Tarsonemina, Scutacaridae). Zoologica 141, StuttgartGoogle Scholar
  10. Ebermann E (1991b) Records of polymorphism in the mite family Scutacaridae (Acari, Tarsonemina). Acarologia 32(2):119–138Google Scholar
  11. Ebermann E (1994) First demonstration of males in species of the genus Archidispus Karafiat (Acari, Tarsonemina, Scutacaridae). Int J Acarol 20(3):169–182CrossRefGoogle Scholar
  12. Ebermann E (1998) Imparipes (Sporichneuthes nov. subgen.), a remarkable new taxon in the mite family Scutacaridae (Acari, Heterostigmata). In: Ebermann E (ed) Arthropod Biology: Contributions to Morphology, Ecology and Systematics. Biosystematics and Ecology Series No. 14:179–214. Österr. Akademie der Wissenschaften, WienGoogle Scholar
  13. Ebermann E, Goloboff PA (2002) Association between neotropical burrowing spiders (Araneae: Nemesiidae) and mites (Acari: Heterostigmata, Scutacaridae). Acarologia 42(1):173–184Google Scholar
  14. Ebermann E, Palacios-Vargas JC (1988) Imparipes (Imparipes) tocatlphilus n. sp. (Acari, Tarsonemina, Scutacaridae) from Mexico and Brazil: First record of ricinuleids as phoresy hosts for scutacarid mites. Acarologia 29(4):347–354Google Scholar
  15. Ebermann E, Rack G (1982) Zur Biologie einer neuen myrmecophilen Art der Gattung Petalomium (Acari, Pygmephoridae). Entomol Mitt Zool Mus Hamburg 7:175–192Google Scholar
  16. Ebermann E, Hall M, Hausl-Hofstätter U, Jagersbacher-Baumann JM, Kirschner R, Pfingstl T, Plassnig E (2012) A new phoretic mite species with remarks to the phenomenon “Sporothecae” (Acari, Scutacaridae; Hymenoptera, Aculeata). Zool Anz. doi: 10.1016/j.jcz.2012.06.003 Google Scholar
  17. Eickwort GC (1990) Associations of mites with social insects. Ann Rev Entomol 35:469–488CrossRefGoogle Scholar
  18. Griffiths DA (1970) A further systematic study of the genus Acarus L., 1758 (Acarina). B Brit Mus 19:85–118Google Scholar
  19. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9Google Scholar
  20. Jagersbacher-Baumann J (2011) Studies on the intra- and interspecific variability of scutacarid mites (Acari, Heterostigmatina). Dissertation, Naturwissenschaftliche Fakultät der Karl-Franzens-Universität GrazGoogle Scholar
  21. Jagersbacher-Baumann J, Ebermann E (2012) Fungal spore transfer and intraspecific variability of a newly described African soil mite (Heterostigmata, Scutacaridae, Heterodispus). Zool Anz 251(2):101–114. doi: 10.1016/j.jcz.2011.05.008 CrossRefGoogle Scholar
  22. Kaliszewski M, Suski ZW, Rejman S (1983) Individual variation in wild and laboratory reared specimens of Tarsonemus nodosus Schaarschmidt, 1959 (Acari: Tarsonemidae). Folia Entomol Hung 44(1):63–81Google Scholar
  23. Karafiat H (1959) Systematik und Ökologie der Scutacariden. In: Stammer HJ (ed) Beiträge zur Systematik und Ökologie mitteleuropäischer Acarina. Band I, Tyroglyphidae und Tarsonemini: 627-712Google Scholar
  24. Khaustov AA, Chydyrov PR (2004) New species of mites of the family Scutacaridae (Acari: Heterostigmata) associated with ants (Hymenoptera, Formicidae) from Turkmenistan. Acarina 12(2):87–103Google Scholar
  25. Klimov PB, Lekveishvili M, Dowling APG, OConnor BM (2004) Multivariate analysis of morphological variation in two cryptic species of Sancassania (Acari: Acaridae) from Costa Rica. Ann Entomol Soc Am 97(2):322–345CrossRefGoogle Scholar
  26. Klimov PB, Bochkov AV, OConnor BM (2006) Host specificity and multivariate diagnostics of cryptic species in predacious cheyletid mites of the genus Cheletophyes (Acari: Cheyletidae) associated with large carpenter bees. Biol J Linn Soc 87:45–58CrossRefGoogle Scholar
  27. Michael AD (1884) The hypopus question, or the life- history of certain Acarina. J Linn Soc Lond 17:371–395CrossRefGoogle Scholar
  28. Michael AD (1886) Upon the Life-history of an Acarus, one stage whereof is known as Labidophorus talpae, Kramer; and upon an unrecorded species of Disparipes. J R Microsc Soc 6(3):377–390CrossRefGoogle Scholar
  29. Okabe K, OConnor BM (2000) Morphometric and systematic analyses of populations of the Schwiebea barbei—group (Acari: Acaridae) with particular reference to populations from North America and Japan. Int J Acarol 26(2):115–126CrossRefGoogle Scholar
  30. Paoli G (1911) Monografia dei Tarsonemidi. Redia 7:215–281Google Scholar
  31. Rack G (1975) Three new species of Pygmephoroidea (Acarina: Tarsonemida) from Fragaria in Florida. Fla Entomol 58(4):231–238CrossRefGoogle Scholar
  32. Schaarschmidt L (1959) Systematik und Ökologie der Tarsonemiden. In: Stammer H (ed) Beiträge zur Systematik und Ökologie mitteleuropäischer Acarina. Band I Tyroglyphidae und Tarsonemini. Akademische Verlagsgesellschaft, Leipzig, pp 713–823Google Scholar
  33. Schousboe C (1986) On the biology of Scutacarus acarorum Goeze (Acari: Trombidiformes). Acarologia 27(2):151–158Google Scholar
  34. Swan DC (1936) Berlese’s fluid: remarks upon its preparation and use as a mounting medium. Bull Entomol Res 27:389–391CrossRefGoogle Scholar
  35. Walter DE, Proctor HC (1999) Mites: ecology evolution and behaviour. CAB International, WallingfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institut für ZoologieKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations