Intraguild predation and cannibalism between the predatory mites Neoseiulus neobaraki and N. paspalivorus, natural enemies of the coconut mite Aceria guerreronis

Abstract

Neoseiulus neobaraki and N. paspalivorus are amongst the most common phytoseiid predators of coconut mite, Aceria guerreronis, found in the spatial niche beneath coconut fruit bracts. Both predators may occur on the same coconut palms in Benin and Tanzania and are therefore likely to interact with each other. Here, we assessed cannibalism and intraguild predation (IGP) of the two predators in the absence and presence of their primary prey A. guerreronis. In the absence of the shared extraguild prey, A. guerreronis, N. neobaraki killed 19 larvae of N. paspalivorus per day and produced 0.36 eggs/female/day, while the latter species killed only 7 larvae of the former and produced 0.35 eggs/female/day. Presence of A. guerreronis only slightly decreased IGP by N. neobaraki but strongly decreased IGP by N. paspalivorus, which consumed 4–7 times less IG prey than N. neobaraki. Resulting predator offspring to IG prey ratios were, however, 4–5 times higher in N. paspalivorus than N. neobaraki. Overall, provision of A. guerreronis increased oviposition in both species. In the cannibalism tests, in the absence of A. guerreronis, N. neobaraki and N. paspalivorus consumed 1.8 and 1.2 conspecific larvae and produced almost no eggs. In the presence of abundant herbivorous prey, cannibalism dramatically decreased but oviposition increased in both N. neobaraki and N. paspalivorus. In summary, we conclude that (1) N. neobaraki is a much stronger intraguild predator than N. paspalivorus, (2) cannibalism is very limited in both species, and (3) both IGP and cannibalism are reduced in the presence of the common herbivorous prey with the exception of IGP by N. neobaraki, which remained at high levels despite presence of herbivorous prey. We discuss the implications of cannibalism and IGP on the population dynamics of A. guerreronis and the predators in view of their geographic and within-palm distribution patterns.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abad-Moyano R, Urbaneja A, Schausberger P (2010) Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine. Exp Appl Acarol 50:329–341

    PubMed  Article  Google Scholar 

  2. Cakmak I, Janssen A, Sabelis MW (2006) Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp Appl Acarol 38:33–46

    PubMed  Article  Google Scholar 

  3. Croft BA, Croft BM (1993) Larval survival and feeding by immature Metaseiulus occidentalis, Neoseiulus fallacis, Amblyseius andersoni and Typhlodromus pyri on life stage groups of Tetranychus urticae Koch and phytoseiid larvae. Exp Appl Acarol 17:685–693

    Article  Google Scholar 

  4. Croft BA, Zhang Z-Q (1994) Walking, feeding and intraspecific interaction of larvae of Metaseiulus occidentalis, Typhlodromus pyri, Neoseiulus fallacis and Amblyseius andersoni held with and without eggs of Tetranychus urticae. Exp Appl Acarol 18:567–580

    Article  Google Scholar 

  5. Croft BA, Kim SS, Kim DI (1996) Intra- and interspecific predation on four life stage groups by adult females of Metaseiulus occidentalis, Typhlodromus pyri, Neoseiulus fallacis and Amblyseius andersoni. Exp Appl Acarol 20:435–444

    Article  Google Scholar 

  6. Domingos CA, Melo JWS, Gondim MGC Jr, de Moraes GJ, Hanna R, Lawson-Balagbo LM, Schausberger P (2010) Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus baraki (Acari: Phytoseiidae). Exp App Acarol 50:201–215

    Article  Google Scholar 

  7. Elgar MA, Crespi BJ (1992) Ecology and evolution of cannibalism. In: Elgar MA, Crespi BJ (eds) Cannibalism. Ecology and evolution among diverse taxa. Oxford University Press, New York, pp 1–12

    Google Scholar 

  8. Fernando LCP, Aratchige NS, Peiris TSG (2003) Distribution patterns of the coconut mite Aceria guerreronis K. and its predator Neoseiulus paspalivorus in coconut palms. Exp Appl Acarol 31:71–78

    PubMed  Article  CAS  Google Scholar 

  9. Finke DL, Denno RF (2003) Intra-guild predation relaxes natural enemies impacts on herbivore populations. Ecol Entomol 28:67–73

    Article  Google Scholar 

  10. Fox LR (1975) Cannibalism in natural populations. Annu Rev Ecol Syst 6:87–106

    Google Scholar 

  11. Heinz KM, Nelson JM (1996) Interspecficc interactions among natural enemies of Bemisia in an inundative biological control program. Biol Cont 6:384–393

    Article  Google Scholar 

  12. Hironori Y, Katsuhiro S (1997) Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field. Entomophaga 42:153–163

    Article  Google Scholar 

  13. Hurd LE, Eisenberg RM (1990) Arthropod community responses to manipulation of a bitrophic predator guild. Ecology 71:2107–2114

    Article  Google Scholar 

  14. Janssen A, Bruin J, Jacobs G, Schraag R, Sabelis MW (1997) Predators use volatiles to avoid prey patches with conspecifics. J Anim Ecol 66:223–232

    Article  Google Scholar 

  15. Lawson-Balagbo LM, Gondim Jr MGC, De Moraes GJ, Hanna R, Schausberger P (2007a) Refuge use by the coconut mite Aceria guerreronis: fine scale spatial distribution and association with other mites under the perianth. Biol Cont 43:102–110

    Article  Google Scholar 

  16. Lawson-Balagbo LM, Gondim Jr MGC, De Moraes GJ, Hanna R, Schausberger P (2007b) Life history of the predatory mites Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidates for biological control of Aceria guerreronis. Exp Appl Acarol 43:49–61

    PubMed  Article  CAS  Google Scholar 

  17. Lawson-Balagbo LM, Gondim Jr MGC, De Moraes GJ, Hanna R, Schausberger P (2008a) Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96

    PubMed  Article  CAS  Google Scholar 

  18. Lawson-Balagbo LM, Gondim Jr MGC, De Moraes GJ, Hanna R, Schausberger P (2008b) Compatibility of Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidate biocontrol agents of the coconut mite Aceria guerreronis. Exp Appl Acarol 45:1–13

    PubMed  Article  CAS  Google Scholar 

  19. Loosey JE, Denno RF (1998) Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–2152

    Google Scholar 

  20. Loosey JE, Denno RF (1999) Factors facilitating synergistic predation: the central role of synchrony. Ecol Appl 9:378–386

    Article  Google Scholar 

  21. Lucas E, Coderre D, Brodeur J (1998) Intraguild predation among aphid predators: characterization and influence of extraguild prey density. Ecology 79:1084–1092

    Article  Google Scholar 

  22. MacRae IV, Croft BA (1997) Intra- and interspecific predation by adult female Metaseiulus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae) when provisioned with varying densities and ratios of Tetranychus urticae (Acari: Tetranychidae) and phytoseiid larvae. Exp Appl Acarol 21:235–245

    Article  Google Scholar 

  23. Magalhães S, Janssen A, Hanna R, Sabelis MW (2002) Flexible antipredator behavior in herbivorous mites through vertical migration in a plant. Oecologia 132:143–149

    Article  Google Scholar 

  24. Magalhães S, Tudorache C, Montserrat M, van Maanen R, Sabelis MW, Janssen A (2004) Diet of intraguild predators affects antipredator behavior in intraguild prey. Behav Ecol 16:364–370

    Article  Google Scholar 

  25. Montserrat M, Janssen A, Magalhães S, Sabelis MW (2006) To be an intraguild predator or cannibal: is prey quality decisive? Ecol Entomol 31:430–436

    Article  Google Scholar 

  26. Moran MD, Rooney TP, Hurd LE (1996) Top-down cascade from a bitrophic predator in an old-field community. Ecology 77:2219–2227

    Article  Google Scholar 

  27. Negloh K, Hanna R, Schausberger P (2008) Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biol Cont 46:523–531

    Article  Google Scholar 

  28. Negloh K, Hanna R, Schausberger P (2010) Season- and fruit age-dependent population dynamics of Aceria guerreronis and its associated predatory mite Neoseiulus paspalivorus on coconut in Benin. Biol Cont 54:349–358

    Article  Google Scholar 

  29. Negloh K, Hanna R, Schausberger P (2011) The coconut mite Aceria guerreronis in Benin and Tanzania: occurrence, damage and associated acarine fauna. Exp Appl Acarol 55:361–374

    PubMed  Article  CAS  Google Scholar 

  30. Onzo A, Hanna R, Janssen A, Sabelis MW (2004) Interactions between two neotropical phytoseiid predators and consequences for biological control of a shared prey—a screenhouse evaluation. Biocon Sci Tech 14:63–76

    Article  Google Scholar 

  31. Onzo A, Hanna R, Negloh K, Sabelis MW, Toko M (2005) Biological control of cassava green mite with exotic and indigenous phytoseiid predators—effects of intraguild predation and supplementary food. Biol Cont 33:143–152

    Article  Google Scholar 

  32. Polis GA (1981) The evolution and dynamics of intraspecific predation. Annu Rev Ecol Syst 12:225–251

    Article  Google Scholar 

  33. Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154

    PubMed  Article  CAS  Google Scholar 

  34. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  35. Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509

    Article  Google Scholar 

  36. Riechert SE, Lawrence K (1997) Test for predation effects of single versus multiple species of generalist predators: spiders and their insect preys. Entomol Exp Appl 84:147–155

    Article  Google Scholar 

  37. Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents: theory and evidence. Biol Cont 5:303–335

    Article  Google Scholar 

  38. SAS (2008) SAS/SAT user’s guide, release v9.2. SAS Institute, Cary

    Google Scholar 

  39. Schausberger P (1997) Inter- and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae). Exp Appl Acarol 21:131–150

    Article  Google Scholar 

  40. Schausberger P (1999) Predation preference in Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae) when offered con- and heterospecific immature life stages. Exp Appl Acarol 23:389–398

    Article  Google Scholar 

  41. Schausberger P (2003) Cannibalism among phytoseiid mites—a review. Exp Appl Acarol 29:173–191

    PubMed  Article  Google Scholar 

  42. Schausberger P, Croft BA (1999) Predation on and discrimination between con- and heterospecific eggs among specialist and generalist phytoseiid mites (Acari: Phytoseiidae). Environ Entomol 28:523–528

    Google Scholar 

  43. Schausberger P, Croft BA (2000a) Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Exp Appl Acarol 24:709–725

    PubMed  Article  CAS  Google Scholar 

  44. Schausberger P, Croft BA (2000b) Nutritional benefits of intraguild predation and cannibalism among generalist and specialist phytoseiid mites. Ecol Entomol 25:473–480

    Article  Google Scholar 

  45. Schausberger P, Croft BA (2001) Kin recognition and larval cannibalism by adult females in specialist predaceous mites. Anim Behav 61:459–464

    Article  Google Scholar 

  46. Sih A, Crowley P, McPeek M, Petrancka J, Strohmeier K (1985) Predation competition and prey communities: a review of field experiments. Ann Rev Ecol Syst 16:269–311

    Article  Google Scholar 

  47. Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:325–329

    Article  Google Scholar 

  48. Soluk DA (1993) Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74:219–225

    Article  Google Scholar 

  49. Spiller DA (1986) Interspecific competition between spiders and its relevance to biological control by generalist predators. Environ Entomol 15:177–181

    Google Scholar 

  50. Walzer A, Schausberger P (1999) Cannibalism and interspecific predation in the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus: predation rates and effects on reproduction and juvenile development. BioCont 43:457–468

    Article  Google Scholar 

  51. Walzer A, Schausberger P (2009) Non-consumptive effects of predatory mites on thrips and its host plant. Oikos 118:934–940

    Article  Google Scholar 

  52. Walzer A, Schausberger P (2011) Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites. Anim Behav 81:177–184

    PubMed  Article  Google Scholar 

  53. Walzer A, Blümel S, Schausberger P (2001) Population dynamics of interacting predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, held on detached bean leaves. Exp Appl Acarol 25:731–743

    PubMed  Article  CAS  Google Scholar 

  54. Walzer A, Moder K, Schausberger P (2009) Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators. Bull Entomol Res 99:457–466

    PubMed  Article  CAS  Google Scholar 

  55. Yao DS, Chant AD (1989) Population growth and predation interference between two species of predatory phytoseiid mites (Acarina: Phytoseiidae) in interactive systems. Oecologia 80:443–455

    Article  Google Scholar 

  56. Zannou I, Hanna R, De Moraes JG, Kreiter S (2005) Cannibalism and interspecific predation in a phytoseiid predator guild from cassava field in Africa: evidence form the laboratory. Exp Appl Acarol 37:27–42

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Richard Houndafoche, S. Pierre, C. Kededji and B. Bovis for their valuable assistance in multiple tasks during these studies. Special thanks to Emile Lawson-Balagbo, Alexis Onzo, Désire Gnanvossou, Ignace Zannou and Toko Muaka for their advice and encouragements. This research was supported by the International Institute of Tropical Agriculture (IITA) through funds provided by the Federal Government of Austria. The present paper is part of K. Negloh’s PhD thesis at the University of Natural Resources and Life Sciences. The manuscript was prepared while the senior author was employed on a project supported by the Board of the Netherlands Foundation for the Advancement of Tropical Research (WOTRO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Koffi Negloh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Negloh, K., Hanna, R. & Schausberger, P. Intraguild predation and cannibalism between the predatory mites Neoseiulus neobaraki and N. paspalivorus, natural enemies of the coconut mite Aceria guerreronis . Exp Appl Acarol 58, 235–246 (2012). https://doi.org/10.1007/s10493-012-9581-6

Download citation

Keywords

  • Trophic interactions
  • Eriophyidae
  • Phytoseiidae
  • Biological control
  • Coconut