Testing for collective choices in the two-spotted spider mite

Abstract

Silk is a vector for collective behaviour in many spinning arthropods, including social spiders, social caterpillars, and some spider mites. In this study, the potential for silk-mediated collective choices is evaluated for the two-spotted spider mite Tetranychus urticae. This subsocial mite lives in large colonies on plants, sheltered under a collectively spun silk web. The silk has an attractive and arresting effect. We test whether the silk trails left by the spider mites can give rise to the collective choice of a path. The experiment consists in offering two identical paths to a group of migrating mites. Our results show that the presence of a silk trail influences the mites, but not sufficiently to systematically provoke a collective choice. In order to determine the trail following potential of T. urticae, we parameterise a theoretical trail following model to fit our experiments and those found in the literature. Our prediction is that even after a large number of mites have passed (200), a systematic collective choice of path should not be expected under the tested conditions. Our results, combined with what is known from the literature, allow us to propose a general scenario for the dispersal behaviour of T. urticae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allee WC (1931) Animal aggregations, a study in general sociology. University of Chicago Press, Chicago

    Book  Google Scholar 

  2. Allee WC (1941) The social life of animals. The Book Club, London

    Google Scholar 

  3. Astudillo Fernandez A, Mailleux A-C, Saffre F, Krafft B, Deneubourg JL (2010) Effect of retentive markers on the dynamics of settlement: the case of arthropod silk. J Theor Biol 265:411–421

    PubMed  Article  Google Scholar 

  4. Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari: Tetranychidae), with references to taxonomy, synonymy, host plants and distribution. Brill Academic Publishers, Leiden

    Google Scholar 

  5. Bounfour M, Tanigoshi LK (2001) Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Ann Entomol Soc Am 94:400–404

    Article  Google Scholar 

  6. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organisation in biological systems. Princeton University Press, Princeton

    Google Scholar 

  7. Clotuche G (2011) The silk as a thread to understand social behaviour in the weaving mite Tetranychus urticae. PhD dissertation, Universitécatholique de Louvian, Belgium

  8. Clotuche G, Mailleux AC, Astudillo Fernández A, Deneubourg JL, Detrain C, Hance T (2011) The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 6(4):e18854

    PubMed  Article  CAS  Google Scholar 

  9. Clutton-Brock TH, Gaynor D, McIlrath GM, Maccoll ADC, Kansky R, Chadwick P, Manser M, Skinner JD, Brotherton PNM (1999) Predation, group size and mortality in a cooperative Mongoose, Suricata suricatta. J An Ecol 68:672–683

    Article  Google Scholar 

  10. Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, New York

    Book  Google Scholar 

  11. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516

    PubMed  Article  CAS  Google Scholar 

  12. Davis DW (1952) Influence of population density on Tetranychus multisetis. J Econ Entomol 45:652–654

    Google Scholar 

  13. Deneubourg JL, Goss S (1989) Collective patterns and decision making. Ethol Ecol Evol 1:295–311

    Article  Google Scholar 

  14. Deneubourg JL, Goss S, Franks N, Pasteels JM (1989) The blind leading the blind: modeling chemically mediated army ant raid patterns. J Insect Behav 2:719–725

    Article  Google Scholar 

  15. Deneubourg JL, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the Argentine ant. J Insect Behav 3:159–168

    Article  Google Scholar 

  16. Deneubourg JL, Lioni A, Detrain C (2002) Dynamics of aggregation and emergence of cooperation. Biol Bull 202:262–267

    PubMed  Article  CAS  Google Scholar 

  17. Detrain C, Deneubourg JL (2008) Collective decision-making and foraging patterns in ants and honeybees. Adv Insect Phys 35:123–173

    Article  Google Scholar 

  18. Dussutour A, Fourcassié V, Helbing D, Deneubourg JL (2004) Optimal traffic organization in ants under crowded conditions. Nature 428:70–73

    PubMed  Article  CAS  Google Scholar 

  19. Dussutour A, Nicolis SC, Despland E, Simpson SJ (2008) Individual differences influence collective behaviour in social caterpillars. An Behav 76:5–16. doi:10.1016/j.anbehav.2007.12.009

    Article  Google Scholar 

  20. Fitzgerald TD (1995) The tent caterpillars. Cornell University Press, Ithaca

    Google Scholar 

  21. Furuichi H, Yano S, Takafuji A, Osakabe Mh (2005) Prey preference of the predatory mite Neoseiulus womersleyi Schicha is determined by spider mite webs. J Appl Entomol 129:336–339

    Article  Google Scholar 

  22. Giardina I (2008) Collective behavior in animal groups: theoretical models and empirical studies. HFSP J 2:205–219

    PubMed  Article  Google Scholar 

  23. Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, Princeton

    Google Scholar 

  24. Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Google Scholar 

  25. Hussey NW, Parr WJ (1963) Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina, Tetranychidae). Entomol Exp Appl 6:207–214

    Article  Google Scholar 

  26. Jeanson R, Deneubourg JL (2007) Conspecific attraction and shelter selection in gregarious insects. Am Nat 170:47–58

    PubMed  Article  Google Scholar 

  27. Jeanson R, Deneubourg JL, Theraulaz G (2004) Discrete dragline attachment induces aggregation in spiderlings of a solitary species. An Behav 67:531–537. doi:10.1016/j.anbehav.2003.06.013

    Article  Google Scholar 

  28. Jeanson R, Rivault C, Deneubourg JL, Blanco S, Fournier R, Jost C, Theraulaz G (2005) Self-organized aggregation in cockroaches. An Behav 69:169–180

    Article  Google Scholar 

  29. Kondo A, Takafuji A (1985) Resource utilization pattern of two species of tetranychid mites (Acarina: Tetranychidae). Res Popul Ecol 27:145–157

    Article  Google Scholar 

  30. Le Goff GJ, Mailleux A-C, Detrain C, Deneubourg JL, Clotuche G, Hance T (2010) Group effect on fertility, survival and silk production in the web spinner Tetranychus urticae (Acari: Tetranychidae) during colony foundation. Behaviour 147:1169–1184

    Article  Google Scholar 

  31. Mailleux A-C, Astudillo Fernandez A, San Martin G, Detrain C, Deneubourg JL (2010) Collective migration in house dust mites. Ethology 116:1–11

    Article  Google Scholar 

  32. Margolies DC, Kennedy GG (1985) Movement of the twospotted spider mite, Tetranychus urticae, among hosts in a corn-peanut agroecosystem. Entomol Exp Appl 37:55–61

    Article  Google Scholar 

  33. McMurtry JA, Huffaker CB, Van de Vrie M (1970) Ecology of tetranychid mites and their natural enemies: a review. I. Tetranychid enemies: their biological characters and the impact of spray particles. Hilgardia 40:331–390

    Google Scholar 

  34. Pratt PD, Croft BA (1999) Expanded distribution of the bamboo spider mite, Schizotetranychus longus (Acari: Tetranychidae), and predation by Neoseiulus fallacies (Acari: Phytoseiidae). Acarologia 40:191–197

    Google Scholar 

  35. Roda A, Nyrop J, English-Loeb G, Dicke M (2001) Leaf pubcence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia 129:551–560

    Google Scholar 

  36. Sabelis MW, Bakker FM (1992) How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae. Exp Appl Acarol 16:203–225

    Article  Google Scholar 

  37. Saffre F, Furey R, Krafft B, Deneubourg JL (1999) Collective decision-making in social spiders: dragline-mediated amplification process acts as a recruitment mechanism. J Theor Biol 198:507–517. doi:10.1006/jtbi.1999.0927

    PubMed  Article  Google Scholar 

  38. Saito Y (1977) Study on spinning behavior of spider mites (Acarina: Tetranychidae). I. Method for quantitative evaluation of the mite webbing, and the relationship between webbing and walking. Jpn J Appl Entomol Zool 21:27–34

    Article  Google Scholar 

  39. Seeley TD (1995) The wisdom of the hive. Harvard University Press, Cambridge

    Google Scholar 

  40. Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28:277–290

    Article  Google Scholar 

  41. Smitley D, Kennedy G (1985) Photo-oriented aerial dispersal behavior of Tetranychus urticae (Acari, Tetraychidae) enhances escape from the leaf surface. Ann Entomol Soc Am 78:609–614

    Google Scholar 

  42. Smitley D, Kennedy G (1988) Aerial dispersal of the two-spotted spider mite (Tetranychus urticae) from field corn. Exp App Acarol 5:33–46

    Google Scholar 

  43. Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  44. Sumpter DJT (2006) The principles of collective animal behaviour. Philos Trans R Soc B 361:5–22

    Article  CAS  Google Scholar 

  45. Sumpter DJT (2010) Collective animal behaviour. Princeton University Press, Princeton

    Google Scholar 

  46. Van Impe G (1985) Contribution à la conception de stratégies de contrôle de l’acarien tisserandcommun, Tetranychus urticae Koch (Acari: Tetranychidae). PhD thesis, Universitécatholique de Louvain

  47. Yano S (2008) Collective and solitary behaviors of twospotted spider mite (Acari: Tetranychidae) are induced by trail following. Ann Entomol Soc Am 101:247–252

    Article  Google Scholar 

Download references

Acknowledgments

A. A. F. and G. C are supported by a grant from the FRIA (Fonds pour la Formation à la RecherchedansIndustrie et l’Agriculture). A-C. M. is supported by IRSIB (Institutd’encouragement de la RechercheScientifique et de l’Innovation de Bruxelles). J.L.D. is a research associate from the Belgian National Funds for Scientific Research. The authors are also indebted to the National Fund for Scientific Research (FNRS, Belgium) for funding this project through the Fund for Fundamental and Collective Ressearch (FRFC, convention 2.4622.06). We thank Dr. T. Van Leeuwen who provided the mite strain used in the experiments and M. Pirnay for building cages and the lighting system. We also thank D. Lalor for proofreading the manuscript and G.Le Goff for his assistance during the experiments. Finally, many thanks to S. Yano for his useful comments and suggestions regarding the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aina Astudillo Fernandez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Astudillo Fernandez, A., Hance, T., Clotuche, G. et al. Testing for collective choices in the two-spotted spider mite. Exp Appl Acarol 58, 11–22 (2012). https://doi.org/10.1007/s10493-012-9558-5

Download citation

Keywords

  • Tetranychus urticae
  • Silk
  • Collective choice
  • Aggregation
  • Binary choice
  • Trail