Experimental and Applied Acarology

, Volume 52, Issue 3, pp 261–274 | Cite as

Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae

  • Mohamed E. I. Badawy
  • Sailan A. A. El-Arami
  • Samir A. M. Abdelgaleil
Article

Abstract

The acaricidal activity of 12 monoterpenes against the two-spotted spider mite, Tetranychus urticae Koch, was examined using fumigation and direct contact application methods. Cuminaldehyde and (−)-linalool showed the highest fumigant toxicity with LC50 = 0.31 and 0.56 mg/l, respectively. The other monoterpenes exhibited a strong fumigant toxicity, the LC50 values ranging from 1.28 to 8.09 mg/l, except camphene, which was the least effective (LC50 = 61.45 mg/l). Based on contact activity, the results were rather different: menthol displayed the highest acaricidal activity (LC50 = 128.53 mg/l) followed by thymol (172.0 mg/l), geraniol (219.69 mg/l) and (−)-limonene (255.44 mg/l); 1-8-cineole, cuminaldehyde and (−)-linalool showed moderate toxicity. At 125 mg/l, (−)-Limonene and (−)-carvone caused the highest egg mortality among the tested compounds (70.6 and 66.9% mortality, respectively). In addition, the effect of molecular descriptors was also analyzed using the quantitative structure activity relationship (QSAR) procedure. The QSAR model showed excellent agreement between the estimated and experimentally measured toxicity parameter (LC50) for the tested monoterpenes and the fumigant activity increased significantly with the vapor pressure. Comparing the results of the fumigant and contact toxicity assays of monoterpenes against T. urticae with the results of acetylcholinesterase (AChE) inhibitory effect revealed that some of the tested compounds showed a strong acaricidal activity and a potent AChE inhibitory activity, such as cuminaldehyde, (−)-linalool, (−)-limonene and menthol. However, other compounds such as (−)-carvone revealed a strong fumigant activity but a weak AChE inhibitory activity.

Keywords

Acaricidal activity Monoterpenes Tetranychus urticae Acetylcholinesterase QSAR 

References

  1. Abbot WS (1925) A method of comparing the effectiveness of an insecticide. J Econ Entomol 18:265–267Google Scholar
  2. Abdelgaleil SAM, Badawy MEI (2006) Acaricidal and molluscicidal potential of three essential oils isolated from Egyptian plants. J Pest Cont Environ Sci 14:35–46Google Scholar
  3. Annonymous (1980) Plant production and protection 21, recommended methods for measurement of resistance to pesticide. FAO, Israel pp. 49–54Google Scholar
  4. Aslan I, Özbek H, Çalmaşur Ö, Şahin F (2004) Toxicity of essential oil vapors to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabasi. Genn Ind Crop Prod 19:167–173CrossRefGoogle Scholar
  5. Basta A, Spooner-Hart RN (2002) Efficacy of an extract of Dorrigo pepper against two-spotted mite and greenhouse thrips. In: Beattie GAC, Watson DM, Stevens ML, Rae DJ, Spooner-Hart RN (eds) Spray oils beyond 2000, 25-29 October 1999. University of Western Sydney, Australia, pp 471–476Google Scholar
  6. Brandenburg RL, Kennedy GG (1987) Ecological and agricultural considerations in the management of two spotted spider mite (Tetranychus urticae Koch). Agric Zool Rev 2:185–236Google Scholar
  7. Çalmaşur Ö, Aslan I, Şahin F (2006) Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crop Prod 23:140–146CrossRefGoogle Scholar
  8. Cetin H, Cilek JE, Aydin L, Yanikoglu A (2009) Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus (Acari: Ixodidae). Vet Parasitol 160:359–361CrossRefPubMedGoogle Scholar
  9. Chiasson H, Belanger A, Bostanian NJ, Vincent C, Poliquin A (2001) Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J Econ Entomol 94:167–171CrossRefPubMedGoogle Scholar
  10. Chiasson H, Bostanian NJ, Vincent C (2004) Acaricidal properties of a chenopodium-based botanical. J Econ Entomol 97:1373–1377CrossRefPubMedGoogle Scholar
  11. Choi WI, Lee SG, Park HM, Ahn YJ (2004) Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). J Econ Entomol 97:553–558CrossRefPubMedGoogle Scholar
  12. De-Oliveira AC, Ribeiro-Pinto LF, Paumgartten JR (1997) In vitro inhibition of CYP2B1 monooxygenase by myrcene and other monoterpenoid compounds. Toxicol Lett 92:39–46CrossRefPubMedGoogle Scholar
  13. Devine GJ, Barber M, Denholm I (2001) Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manag Sci 57:443–448CrossRefPubMedGoogle Scholar
  14. Ellman GL, Courtney D, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmac 7:88–95CrossRefGoogle Scholar
  15. Enan EE (2001) Insecticidal activity of essential oils: Octopaminergic sites of action. ESA 2001 Annual Meeting: An Entomological Odyssey of ESA, San Diego, CA, USA, D0579Google Scholar
  16. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  17. Gough N (1990) Evaluation of miticides for the control of two-spotted mite Tetranychus urticae Koch on weld roses in southern Queensland. Crop Prot 9:119–127CrossRefGoogle Scholar
  18. Hansch C, Fujita T (1964) Rho-sigma-pi analysis. A method for the correlation of biological activity and chemical structure. Am Chem Soc 86:1616–1626CrossRefGoogle Scholar
  19. Hay RKM, Waterman PG (1993) Volatile oil crops. Wiley, EssexGoogle Scholar
  20. Helle W, Sabelis MW (1985) Spider mites: their biology, natural enemies and control, vol 1B. Elsevier, AmsterdamGoogle Scholar
  21. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608CrossRefGoogle Scholar
  22. Isman MB (2001) Pesticides based on plant essential oils for management of plant pests and disease. International Symposium on Development of Natural Pesticides from Forest Resources, Seoul, Korea. Korea Forest Research Institute, pp. 1–9Google Scholar
  23. Jeppson LR, Keifer HH, Baker TW (1975) Mites injurious to economic plants. University of California Press, BerkeleyGoogle Scholar
  24. Kim SS, Seo SG (2001) Relative toxicity of some acaricides to the predatory mite, Amblyseius womersleyi and the two spotted spider mite, Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Appl Entomol Zool 36:509–514CrossRefGoogle Scholar
  25. Kim EH, Kim HK, Ahn YJ (2003) Acaricidal activity of clove bud oil compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J Agric Food Chem 51:885–889CrossRefPubMedGoogle Scholar
  26. Kim HK, Kim JR, Ahn YJ (2004a) Acaricidal activity of cinnamaldehyde and its congeners against Tyrophagus putrescentiae (Acari: Acaridae). J Stored Prod Res 40:55–63CrossRefGoogle Scholar
  27. Kim YJ, Lee SH, Lee SW, Ahn YJ (2004b) Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Manag Sci 60:1001–1006CrossRefPubMedGoogle Scholar
  28. Knowles CO (1997) Mechanisms of resistance to acaricides. In: Sjut V (ed) Molecular mechanisms of resistance to agrochemicals, vol 13. Springer, Berlin, pp 57–77Google Scholar
  29. Lee S, Tsao R, Peterson C, Coats JR (1997) Insecticidal activity of monoterpenes to western corn root worm (Coleoptera: Chrysomelidae), two spotted spider mite (Acari: Tetanychidae), and housefly (Diptera: Muscidae). J Econ Entomol 90:883–892PubMedGoogle Scholar
  30. Lee BH, Choi WS, Lee SE, Park BS (2001a) Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil. Sitophilus oryzae (L.). Crop Prot 20:317–320CrossRefGoogle Scholar
  31. Lee SE, Lee BH, Choi WS, Park BS, Kim JG, Campbell BC (2001b) Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag Sci 57:548–553CrossRefPubMedGoogle Scholar
  32. Lee CH, Sung BK, Lee HS (2006) Acaricidal activity of fennel seed oils and their main components against Tyrophagus putrescentiae, a stored-food mite. J Stored Prod Res 42:8–14CrossRefGoogle Scholar
  33. Miresmailli S, Isman MB (2006) Efficacy and persistence of rosemary oil as an acaricide against two spotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J Econ Entomol 99:2015–2023CrossRefPubMedGoogle Scholar
  34. Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62:366–367CrossRefPubMedGoogle Scholar
  35. Perrucci S (1995) Acaricidal activity of some essential oils and their constituents against Tyrophagus longior, a mite of stored food. J Food Prot 58:560–563Google Scholar
  36. Pollart SM, Ward GW, Platts-Mills TAE (1987) House dust sensitivity and environmental control. Immunol Allergy Clin North Am 7:447–461Google Scholar
  37. Rice PJ, Coats JR (1994) Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern maize rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 87:1172–1179PubMedGoogle Scholar
  38. Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 14:1965–1975CrossRefGoogle Scholar
  39. Sánchez-Ramos I, Castañera P (2000) Acaricidal activity of natural monoterpenes on Tyrophagus putrescentiae (Schrank), a mite of stored food. J Stored Prod Res 37:93–101CrossRefPubMedGoogle Scholar
  40. Siegler EH (1947) Leaf-disk technique for laboratory tests of acaricides. J Econ Entomol 40:441–442PubMedGoogle Scholar
  41. Skirvin DJ, Williams MEC, Fenlon JS, Sunderland KD (2002) Modeling the effects of plant species on biocontrol effectiveness in ornamental nursery crops. J Appl Ecol 39:469–480CrossRefGoogle Scholar
  42. Stumpf N, Nauen R (2001) Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583CrossRefPubMedGoogle Scholar
  43. Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 72:111–121CrossRefGoogle Scholar
  44. Stumpf N, Zebitz CPW, Kraus W, Moores GD, Nauen R (2001) Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pest Biochem Physiol 69:131–142CrossRefGoogle Scholar
  45. Szlendak E, Kraszpulski P (1991) Energy budget of the grain mite, Acarus siro (Acari: Acaridae). Exp Appl Acarol 10:221–230CrossRefPubMedGoogle Scholar
  46. US EPA (2004) Biopesticides—25b Minimum risk pesticides. http://www.epa.gov/oppbppd1/biopesticides/regtools/25b_list.htm
  47. Van Leeuwen T, Van Pottelberge S, Tirry L (2006) Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manag Sci 62:425–433CrossRefPubMedGoogle Scholar
  48. Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L (2008) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 1:1–9Google Scholar
  49. Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L (2009) Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manag Sci 65:358–366CrossRefPubMedGoogle Scholar
  50. Wege PJ, Leonard PK (1994) Insecticide resistance action committee (IRAC) fruit crops spider mite resistance management guidelines. Proceeding of the Brighton Crop Protection Conference-Pest and Diseases, pp. 427–430Google Scholar
  51. Witalinski W (1993) Eggs shells in mites: vitelline envelope and chorion in Acaridida (Acari). Exp Appl Acarol 17:321–344CrossRefGoogle Scholar
  52. Yang X, Zhu KY, Buschman LL, Margolies DC (2001) Comparative susceptibility and possible detoxification mechanisms for selected miticides in Banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 25:293–299CrossRefPubMedGoogle Scholar
  53. Zhang Z (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, WallingfordCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mohamed E. I. Badawy
    • 1
  • Sailan A. A. El-Arami
    • 2
  • Samir A. M. Abdelgaleil
    • 1
  1. 1.Department of Pesticide Chemistry, Faculty of AgricultureAlexandria UniversityAlexandriaEgypt
  2. 2.Department Plant Protection, Faculty of AgricultureSanaa UniversitySanaaYemen

Personalised recommendations