Skip to main content

Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I

Abstract

This review is a comprehensive study of recent advances related to cytological, biochemical and physiological changes induced in plants in response to eriophyoid mite attack. It has been shown that responses of host plants to eriophyoids are variable. Most of the variability is due to individual eriophyoid mite–plant interactions. Usually, the direction and intensity of changes in eriophyoid-infested plant organs depend on mite genotype, density, or the feeding period, and are strongly differentiated relative to host plant species, cultivar, age and location. Although the mechanisms of changes elicited by eriophyoid mites within plants are not fully understood, in many cases the qualitative and quantitative biochemical status of mite-infested plants are known to affect the performance of consecutive herbivorous arthropods. In future, elucidation of the pathways from eriophyoid mite damage to plant gene activation will be necessary to clarify plant responses and to explain variation in plant tissue damage at the feeding and adjacent sites.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano J-J, Schmelz EA, Solano R (2007) ABA is a signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defences in Arabidopsis. Plant Cell 19:1665–1681

    CAS  PubMed  Google Scholar 

  • Amrine JW Jr, Stasny TAH, Flechtmann CHW (2003) Revised keys to world genera of the Eriophyoidea (Acari: Prostigmata). Indira Publishing House, Michigan

    Google Scholar 

  • Andersen PC, Mizell RF III (1987) Impact of the peach silver mite, Aculus cornutus (Acari: Eriophyoidea), on leaf gas exchange of ‘Flordaking’ and ‘June Gold’ peach trees. Environ Entomol 16:660–663

    Google Scholar 

  • Angeli G, Rizzi C, Dorigoni A, Ioriatti C (2007) Population injury levels of the apple rust mite Aculus schlechtendali (Nal.) on Golden Delicious and Red Delicious apple fruits. Bull OILB/SROP 30(4):255–260

    Google Scholar 

  • Arimura G, Tashiro K, Kuhara S, Nishioka T, Ozawa R, Takabayashi J (2000) Gene responses in bean leaves induced by herbivoy and by herbivore-induced volatiles. Biochem Biophys Res Commun 277:305–310

    CAS  PubMed  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    CAS  PubMed  Google Scholar 

  • Baker GT, Chandrapatya A (1989) Plant abnormalites induced by eriophyid mites on several species of plants in Thailand. J Electron Microsc Soc Thail 3(2):39–47

    Google Scholar 

  • Balasubramanian M, Purushothaman D (1972a) Indole acetic acid in the eriophyid mite gall on Pongamia glabra Vent. caused by Eriophyes cheriani Massee (Eriophyidae: Acarina). Labdev J Sci Tech 10-B(3–4):172–173

    Google Scholar 

  • Balasubramanian M, Purushothaman D (1972b) Phenols in healthy and galled leaves of Pongamia glabra Vent. caused by an eriophyid mite, Eriophyes cheriani Massee (Eriophyidae: Acarina). Ind J Exp Biol 10:394–395

    CAS  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New York

    Google Scholar 

  • Bi JL, Murphy JB, Felton GW (1997) Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J Chem Ecol 23:97–117

    CAS  Google Scholar 

  • Boczek J (1974) Ecology of eriophyid mites on economic crops. Final report E21-ENT-24/FG-Po-245

  • Boczek J, Griffiths DA (1994) Structure and systematic of eriophyid mites (Acari: Eriophyoidea) and their relationship to host plants. In: Williams MAJ (ed) Plant galls, systematics association special volume 49. Calerdon Press, Oxford, pp 119–129

    Google Scholar 

  • Bowles DJ (1990) Defense-related proteins in higher plants. Ann Rev Biochem 59:873–907

    CAS  PubMed  Google Scholar 

  • Bronner R, Westphal E (1987) Modifications des noyaux des cellules epidermiques foliaires de Solanacees soumises a l’action parasitaire d’un acerien cecidogene, Eriophyes cladophthirus. Premier Congres de la Societe Francaise de Phytopathologie, Rennes, Reumes:39

  • Bronner R, Westphal E, Dreger F (1989) Chitosan, a component of the compatible interaction between Solanum dulcamara L. and the gall mite Eriophyes cladophthirus Nal. Physiol Mol Plant Pathol 34:117–130

    CAS  Google Scholar 

  • Bronner R, Westphal E, Dreger F (1991a) Pathogenesis-related proteins in Solnum dulcamara L. resistant to the gall mite Aceria cladophthirus Nalepa (syn. Eriophyes cladophthirus Nal.). Physiol Mol Plant Pathol 38(2):93–104

    CAS  Google Scholar 

  • Bronner R, Westphal E, Dreger F (1991b) Enhanced peroxidase activity associated with hypersensitive response of Solnum dulcamara L. to the gall mite Aceria cladophthirus (Acari: Eriophyoidea). Can J Bot 69:2192–2196

    CAS  Google Scholar 

  • Cohen Y, Reuveni M, Baider A (1999) Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopora viticola in grapevines. Eur J Plant Pathol 105:351–361

    CAS  Google Scholar 

  • Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am Midland Naturalist 110:225–234

    Google Scholar 

  • Croft BA, Hoying SA (1977) Competitive displacement of Panonychus ulmi (Koch) by Aculus schlechtendali Nalepa in apple orchards. Can Entomol 109:1025–1034

    CAS  Google Scholar 

  • Czeczuga B (1975) The carotenoid content of galls produced by Eriophyes tiliae var. Rudis Nal. (Acarina) on Tilia cordata Mill., leaves. Marcellia 38:223–225

    CAS  Google Scholar 

  • De Lillo ER, Monfreda R (2002) La ‘saliva’ degli acari Eriophyoidea: messa a punto di un di indagine e risultati preliminari. Atti XiX Congresso nazionale italiano di Entomologia, catania 10–15 giugno 2002, pp 1365–1370

  • De Lillo ER, Monfreda R (2004) ‘Salivary secretions’ of eriophyoids (Acari: Eriophyoidea): first results of an experimental model. Exp Appl Acarol 34(3–4):291–306

    PubMed  Google Scholar 

  • Duffey SS, Felton GW (1991) Enzymatic anti nutritive defenses of the tomato plant against insects. In: Hedin PA (ed) Naturally occurring pest bioregulators. American chemical society symposium series 449, Dallas. American Chemical Society, Washington, DC, pp 166–197

    Google Scholar 

  • Duffey SS, Stout MJ (1996) Anti nutritive and toxic compounds of plant defense against insects. Arch Insect Biochem Physiol 32(1):3–37

    CAS  Google Scholar 

  • Dulić-Stojanović Z, Stevanović B, Petanović R (2001) Morfo-anatomske promene listova oraha izazvane eriofidama Aceria erinea (Nal.) i A. tristriata (Nal.). Zaštita bilja 52 (2) 236:99–114

  • Duso C, Castagnoli M, Simoni S, Angeli G (2008) The impact of eriophyoids on crops: new and old case studies. In: Bertrand M, Kreiter S, McCoy K, Migeon A, Navajas M, Tixter MS, Vial L (eds) Integrative acarology. Proceedings of the 6th Congress of the European Association of Acarologists, Montpellier, 21–25 July 2008, pp 317–324

  • Easterbrook MA, Fuller MM (1986) Russeting of apples caused by apple rust mite Aculus schlechtendali (Acarina: Eriophyidae). Ann Appl Biol 109:1–9

    Google Scholar 

  • Easterbrook MA, Palmer JW (1996) The relationship between early-season leaf feeding by apple rust mite, Aculus schlechtendali (Nal.), and fruit set and photosynthesis of apple. J Hort Res 71(6):939–944

    Google Scholar 

  • Feeny P (1968) Effect of oak leaf tannins on larval growth of the winter moth, Operophtera brumata. J Insect Physiol 14:805–817

    CAS  Google Scholar 

  • Felton GW, Donato K, Delvecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15:2667–2694

    CAS  Google Scholar 

  • Flechtmann CHW, Berti-Filho E (1994) Effect of feeding by two species of eriophyid mites (Acari, Eriophyidae) on the mineral content of their host plants. Internat J Acarol 20(1):61–65

    Google Scholar 

  • Flors V, Ton J, Jakab G, Mauch-Mani B (2005) Abscisic acid and callose: team players in defence against pathogens? J Phytopathol 153:377–383

    CAS  Google Scholar 

  • Forslund K, Pettersson J, Bryngelsson T, Jonsson L (2000) Aphid infestation induces PR-proteins differently in barley susceptible or resistant to the bird-cherry-oat aphid (Rhapalosiphum padi). Physiol Plant 110:496–502

    CAS  Google Scholar 

  • Freeman TP, Goolsby JA, Ozman SK, Nelson DR (2005) An ultrastructural study of the relationship between the mite Floracarus perrepae Knihinicki & Boczek (Acariformes: Eriophyidae) and the fern Lygodium microphyllum (Lygodiaceae). Aust J Entomol 44:54–61

    Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    CAS  Google Scholar 

  • Gibson RW (1974) Studies of the feeding behavior of the eriophyid mite Abacarus hystrix, a vector of grass viruses. Ann Appl Biol 78:213–217

    Google Scholar 

  • Grinberg M, Perl-Treves R, Palevsky E, Shomer I, Soroker V (2005) Interaction between cucumber plants and the broad mite, Polyphagotarsonemus latus: from damage to defense gene expression. Entomol Exp Appl 115:135–144

    CAS  Google Scholar 

  • Hadwiger LA (1999) Host-parasite interactions: elicitation of defense responses in plants with chitosan. In: Jolles P, Muzarelli RAA (eds) Chitin and Chitinases. Birkhauser Verlag, Basel, pp 185–200

    Google Scholar 

  • Haque MM, Kawai A (2002) Population growth of tomato russet mite, Aculops lycopersici (Acari: Eriophyidae) and its injury effect on growth of tomato plants. J Acarol Soc Jpn 11(1):1–10

    Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry. Academic Press Limited, London

    Google Scholar 

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501

    Google Scholar 

  • Haukioja E, Niemela P, Siren S (1985) Foliage phenols and nitrogen in relation to growth, insect damage and ability to recover after defoliationin the mountain birch Betula pubescens ssp. tortosa. Oecologia 65:214–222

    Google Scholar 

  • Hesse M (1971) Űber Mehrkernigkeit und Polyploidisierung der Nahrgewebe einiger Milbengallen. Österr Bot Z 119:74–93

    Google Scholar 

  • Hislop RG, Jeppson LR (1976) Morphology of mouthparts of several species of phytophagous mites. J Econ Entomol 69:1125–1135

    Google Scholar 

  • Hutangura P, Mathesius U, Jones MGK, Rolfe B (1999) Auxin induction is a trigger for root gall caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust J Plant Physiol 26:221–231

    CAS  Google Scholar 

  • Inbar M, Doostdar H, Sonoda RM, Leibee GL, Mayer RT (1998) Elicitors of plant defensive systems reduce insect densities and disease incidence. J Chem Ecol 24(1):135–149

    CAS  Google Scholar 

  • Inbar M, Mayer R, Doostdar H (2003) Induced activity of pathogenesis related (PR) proteins in aphid galls. Symbiosis 34:293–300

    CAS  Google Scholar 

  • Iriti M, Faoro F (2007) Review of innate and specific immunity in plants and animals. Mycopathologia 164:57–64

    PubMed  Google Scholar 

  • Ishaaya I, Sternlicht M (1969) Growth accelerators and inhibitors in lemon buds infested by Aceria sheldoni (Ewing) (Acarina: Eriophyidae). J Exp Bot 20(4):796–804

    CAS  Google Scholar 

  • Ishaaya I, Sternlicht M (1971) Oxidative enzymes, ribonuclease, and amylase in lemon buds infested with Aceria sheldoni (Ewing) (Acarina: Eriophyidae). J Exp Bot 22(70):146–152

    CAS  Google Scholar 

  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–2513

    CAS  PubMed  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. Univ. Calif. Press, Berkeley, pp 327–614

    Google Scholar 

  • Jimenez DR, Yokomi RK, Mayer RT, Shapiro JP (1995) Cytology and physiology of silverleaf white-fly induced squash silverleaf. Physiol Mol Plant Path 46:227–242

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. Mc Grow-Hill, New York

    Google Scholar 

  • Kane NA, Jones CS, Vuorisalo T (1997) Development of galls of Alnus glutinosa and Alnus incana (Betulaceae) caused by the eriophyid mite Eriophyes laevis (Nalepa). Int J Plant Sci 158(1):13–23

    Google Scholar 

  • Kant MR, Ament K, Sabelis MW, Haring MA, Scuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495

    CAS  PubMed  Google Scholar 

  • Kauss H (1996) Callose synthesis. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Sci Publ, Guildford, pp 77–92

    Google Scholar 

  • Keifer HH (1959) Eriophyid studies XXVI. Bull Calif Dept Agric 47:271–281

    Google Scholar 

  • Keifer H, Baker E, Kono T, Delfinado M, Styer W (1982) An illustrated guide to plant abnormalities caused by Eriophyid mites in North America. USDA Agriculture Handbook Number 573

  • Kielkiewicz M (1996) Hypersensitive response of tomato leaf tissues towards Tetranychus cinnabarinus Boisd. (Tetranychidae) feeding. In: Mitchell R, Horn DJ, Needham GR, Welbourn VC (eds) Acarology IX. Ohio Biological Survey, Columbus, pp 47–50

    Google Scholar 

  • Kielkiewicz M (1998) Concentration of some phenylpropanoid compounds and the activity of oxidative enzymes within tomato plant (Lycopersicon esculentum Mill.) locally infested by the carmine spider mite (Tetranychus cinnabarinus Boisd.). Zesz Nauk Ochr Srod 214:41–47

    Google Scholar 

  • Kielkiewicz M (2002) Influence of carmine spider mite, Tetranychus cinnabarinus Boisd. (Acarina: Tetranychidae) feeding on ethylene production and the activity of oxidative enzymes in damaged tomato plants. In: Bernini F, Nannelli R, Nuzzaci G, de Lillo E (eds) Acari: phylogeny and evolution, adaptations in mites and ticks. Kluwer Academic Publishers, Dordrecht, pp 389–392

    Google Scholar 

  • Kielkiewicz M (2003) Defensive strategies of glasshouse tomato (Lycopersicon esculentum Mill.) plants against the carmine spider mite (Tetranychus cinnabarinus Boisd., Acari: Tetranychidae) infestation. Treatises and Monographs. Publications of Warsaw Agricultural University, Warsaw

    Google Scholar 

  • Kondo A, Hiramatsu T (1999) Analysis of peach tree damage caused by peach silver mite, Aculus fockeui (Nalepa et Trouessart) (Acari: Eriophyidae). Jpn J Appl Entomol Zool 43(4):189–193

    Google Scholar 

  • Kozlowski J (1998) Factors determining susceptibility and response of apple tree cultivars to the applerust mite Aculus schlechtendali (Nalepa). Rozprawy Naukowe IOR, Zeszyt 2, Poznan

  • Kozlowski J, Zielinska L (1997) Cytological changes in apple leaves infested with the apple rust mite–Aculus schlechtendali (Nal.) (Acarina: Eriophyidea). J Plant Prot Res 37(1/1):72–84

    Google Scholar 

  • Krantz GW (1973) Observations on the morphology and behavior of the Filbert Rust Mite, Aculus comatus (Prostigmata: Eriophyoidea) in Oregon. Ann Entomol Soc Am 66:709–717

    Google Scholar 

  • Krantz GW, Lindquist EE (1979) Evolution of phytophagous mites (Acari). Ann Rev Entomol 24:121–158

    Google Scholar 

  • Larew HG (1982) A comparative anatomical study of galls caused by the major cecidogenic groups, with special emphasis on nutritive tissue. Dissertation, Oregon State Univ., Cornvallis

  • Larson KC (1998) The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia 115(1/2):161–166

    Google Scholar 

  • Lee TT, Starratt AN, Jevnikar JJ (1982) Regulation of enzymatic oxidation of indol-3-accetic acid by phenols: structure activity relationships. Phytochemistry 21(3):517–523

    CAS  Google Scholar 

  • Lesna I, Conijn CGM, Sabelis MW (2004) From biological control to biological insight: rust-mite induced change in bulb morphology, a new mode of indirect plant defence? Phytophaga XIV:285–291

    Google Scholar 

  • Lindquist EE (1996) External anatomy and systematics. External anatomy and notation of structures. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites—their biology natural enemies and control. Elsevier, Amsterdam, pp 3–31

    Google Scholar 

  • Ma RZ, Reeze JC, Black LV, Bramel-Cox PJ (1990) Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs Schizaphis graminum (Homoptera: Aphididae). J Insect Physiol 36:507–512

    CAS  Google Scholar 

  • Mani MS (1964) Ecology of plant galls. W Junk Publisher, The Hague

    Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    CAS  PubMed  Google Scholar 

  • Mayer J (1952) Rapports entre l’evolution cytologiques du tissue nourticier D’Eriophyes macrorhynchus Nal. et la biologique de l’ Acarien. CR Soc Biol 233:1545–1547

    Google Scholar 

  • Mayer RT, McCollum TG, McDonald RE, Polston JE, Doostdar H (1996) Bemisia feeding induces pathogenesis-related proteins in tomato. In: Gerling D, Mayer RT (eds) Taxonomy, biology, damage control and management. Intercept, Andover, pp 179–188

    Google Scholar 

  • McCoy CW (1996) Stylar feeding injury and control of Eriophyoid mites in citrus. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 513–526

    Google Scholar 

  • McCoy CW, Albrigo LG (1975) Feeding injury to the orange caused by the citrus rust mite, Phyllocoptruta oleivora (Prostigmata: Eriophyoidea). Ann Entomol Soc Am 68:289–297

    CAS  Google Scholar 

  • Meyer J (1987) Plant galls and gall inducers. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Michalska K, Shi A (2004) A first view on factors influencing spermatophore deposition by the eriophyid mite Cecidophyopsis hendersoni (Keifer). Phytophaga XIV:141–148

    Google Scholar 

  • Miles PW, Peng Z (1989) Studies on the salivary physiology of plant bugs: detoxification of phytochemicals by the salivary peroxidase of aphids. J Insect Physiol 35:865–872

    CAS  Google Scholar 

  • Monfreda R, Spagnuolo M (2004) Enzyme activity of an eriophyoid ‘salivary’ secretion: preliminary report of polygalacturonase. Phytophaga 14:611–614

    Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    CAS  PubMed  Google Scholar 

  • Mound LA (1994) Plant galls. In: Williams MAJ (ed) Systematics association special volume no. 49. Clarendon Press, Oxford, pp 131–149

    Google Scholar 

  • Nuzzaci G (1976) Feeding behavior of eriophyid mites. Entomologica (Bari) 12:75–80

    Google Scholar 

  • Nuzzaci G (1979) Contributo alla conoszenza dello gnathosoma degli Eriofidi. Entomologica 15:73–101

    Google Scholar 

  • Nuzzaci G, Alberti G (1996) Internal anatomy and physiology. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites their biology natural enemies and control. Elsevier, Amsterdam, pp 101–150

    Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274(5294):1914–1917

    PubMed  Google Scholar 

  • Oldfield GN (1996a) Diversity and host plant specificity. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 195–216

    Google Scholar 

  • Oldfield GN (1996b) Toxemias and other non-distortive feeding effects. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 243–250

    Google Scholar 

  • Oldfield GN (2005) Biology of Gall-inducing Acari. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology and evolution of gall-inducing arthropods. Science, Portland, pp 35–57

    Google Scholar 

  • Ollerstam O (2002) Induced resistance in basket willow against a gall midge. Dissertation. Swedish University of Agricultural Science, Uppsala

  • Pećinar IB, Stevanović B, Rector G, Petanović R (2007) Anatomical injuries caused by Leipothrix dipsacivagus Petanovic & Rector on cut-leaf teasel, Dipsacus laciniatus L. (Dipsacaceae). Arch Biol Sci 59(4):363–367

    Google Scholar 

  • Pećinar IB, Stevanović B, Rector G, Petanović R (2008) Morphological injury of cut-leaf teasel, Dipsacus laciniatus L. (Dipsacaceae) induced by the eriophyid mite Leipothrix dipsacivagus Petanovic et Rector (Acari: Eriophyoidea). J Plant Int 4(1):1–6

    Google Scholar 

  • Petanović R, Kielkiewicz M (2010) Plant–eriophyoid mite interactions: specific and unspecific morphological alterations. Part II. Exp Appl Acarol. doi: 10.1007/s10493-009-9328-1

  • Rajagopal K, Jayaraj S, Subramanium TR (1970) Physiological mechanism of resistance in jasmine to blister mite Aceria jasminii C. (Eriophyidae: Acarina). Indian J Exp Biol 8:44–47

    CAS  Google Scholar 

  • Rančić D, Petanović R (2002a) Anatomical alternations of Galium mollugo L. leaves caused by eriophyoid mite Aculus anthobius (Nal.). Acta Entomol Serb 7(1/2):119–128

    Google Scholar 

  • Rančić D, Petanović R (2002b) Anatomical alternations of Convolvulus arvensis L. leaves caused by eriophyoid mite Aceria malherbae Nuzz. Acta Entomol Serb 7(1/2):129–136

    Google Scholar 

  • Rančić D, Petanović R. (2008) Differences in the leaf morphology of sycamore maple infested by two congeneric eriophyid species at Tara National Park in western Serbia. In: Bertrand M, Kreiter S, McCoy K, Migeon A, Navajas M, Tixter M-S, Vial L (eds) Integrative Acarology. Proceedings of the 6th congress of the european association of acarologists, Montpellier, 21–25 July, 2008, pp 326–330

  • Rančić D, Stevanović B, Petanović R, Magud B, Toševski I, Gassmann A (2006) Anatomical injury induced by eriophyid mite Aceria anthocoptes on the leaves of Cirsium arvense. Exp Appl Acarol 38:243–253

    PubMed  Google Scholar 

  • Rohfritsch O (1975) Etude comparative de cellules du tissue naurricier de la jeune galle de l’Aulax glechomae L. sur le Glechoma hederaceum L. et de cellules du tissue naurricier abandone par le parasite. Marcellia 38:185–196

    Google Scholar 

  • Royalty RN, Perring TM (1988) Morphological analysis of damage to tomato leaflets by tomato russet mite (Acari: Eriophyidae). J Econ Entomol 81(3):816–820

    Google Scholar 

  • Royalty RN, Perring TM (1989) Reduction of photosynthesis of tomato leaflets by tomato russet mite (Acari: Eriophyidae). Environ Entomol 18:256–260

    Google Scholar 

  • Royalty RN, Perring TM (1996) Nature of damage and its assessment. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 493–512

    Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Ann Rev Phytopathol 2:425–449

    Google Scholar 

  • Ryan CA (2000) The systemin signalling pathway: differential activation of plant defensive genes. Bioch Bioph Acta 1477:112–121

    CAS  Google Scholar 

  • Shevtchenko VG, Silvere AP (1968) Rotovoi aparat chetyrekhnogikh kleshchei (Acarina: Eriophyoidea). Esti NSV Tead Akad Tiom Biol 17:248–263

    Google Scholar 

  • Shi A, Tomczyk A (2001) Impact of feeding of eriophyid mite Epitrimerus gibbosus (Nalepa) (Acari: Eriophyoidea) on some biochemical components of blackberry (Rubus spp.). Bull Polish Acad Sci, Biol Sci 49(1):41–47

    Google Scholar 

  • Silvere A.P, Shtein-Margolina V (1976) Tetrapodili- Chetyrekhnogie Kleshchi. Inst Exp Biol Akad. Nauk Tallin, Estonia

  • Smith CM (2005) Plant resistance to arthropods. Molecular and conventional approaches. Springer, Dordrecht

    Google Scholar 

  • Soika G, Kielkiewicz M (2004) Occurrence of Phytoptus tetratrichus (Nalepa) (Acari: Eriophyoidea) and differences in morphology of leaf galls on two linden species. Phytophaga XIV:615–622

    Google Scholar 

  • Spence KO, Bicocca VT, Rosenheim JA (2007) Friend or foe? Plant’s induced response to an omnivore. Environ Entomol 36(3):623–630

    PubMed  Google Scholar 

  • Spieser F, Graf B, Walther P, Noesberger J (1998) Impact of apple rust mite (Acari: Eriophyidae) feeding on apple leaf gas exchange and leaf color associated with changes in leaf tissue. Environ Entomol 27(5):1149–1156

    Google Scholar 

  • Stafford H (1988) Proanthocyanidins and the lignin connection. Phytochemistry 27(1):1–6

    CAS  Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and physiology of higher plant 1, 3-β-glucans (callose). In: Stone BA, Clarke AE (eds) Chemistry and biology of (1, 3)-β-Glucans. La Trobe University Press, Bundoora, pp 365–429

    Google Scholar 

  • Stout MJ, Workman J, Duffey SS (1994) Differential induction of tomato foliar proteins by arthropod herbivores. J Chem Ecol 20:2575–2594

    CAS  Google Scholar 

  • Stout MJ, Workman KV, Duffey SS (1996) Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomol Exp Appl 79:255–271

    Google Scholar 

  • Tandon P (1985) Peroxidase-catalyzed IAA-oxidation in presence of cofactors and auxin protectors isolated from Eriophyes incited Zizyphus gall tissue. Cecid Int VI(1-3):69–81

    Google Scholar 

  • Tandon P, Arya HC (1980) Presence of auxin protectors in Eriophyes induced Zizyphus stem galls. Experientia 36(8):958–959

    CAS  Google Scholar 

  • Taper ML, Case TJ (1987) Interaction between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia 71:254–261

    Google Scholar 

  • Taper ML, Zimmerman EM, Case TJ (1986) Source of mortality for a cynipid gall-wasps (Dryocosmus dubiosus (Hymenoptera: Cynipidae)): The importance of tannin/fungus interaction. Oecologia 68:437–445

    Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (2001) Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol Entomol 26:312–324

    Google Scholar 

  • Thaler JS, Fidantsef AL, Bostock RM (2002) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159

    CAS  PubMed  Google Scholar 

  • Thompson J (1994) The coevolutionary process. University of Chicago, Chicago, p 376

    Google Scholar 

  • Thomsen J (1975) Development and histology of galls on Tilia platyphylla caused by Eriophyes tiliae tiliae. Bot Tidsskr 69(4):262–270

    Google Scholar 

  • Thomsen J (1988) Feeding behavior of Eriophyes tiliae tiliae Pgst. and suction track in the nutritive cells of the galls caused by mites. Ent Meddr 56(2):73–78

    Google Scholar 

  • Tomczyk A, Boczek J (2006) Physiological and biochemical changes in tree leaves infested by some Eriophyoid mites (Acari: Eriophyoidea). In: Gabrys G, Ignatowicz S (eds) Advances in polish acarology. Warsaw, Poland, pp 413–419

    Google Scholar 

  • Ton J, Mauch-Mani B (2004) β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130

    CAS  PubMed  Google Scholar 

  • Van Leeuwen T, Witters J, Nauen R, Duso C, Tirry L (2010) The control of eriophyoid mites: state of the art and future challenges. Exp Appl Acarol. doi: 10.1007/s10493-009-9312-9

  • Vaneckova-Skuhrava I (1996) Harmfulness of eriophyid mites (Eriophyoidea, Acari) causing galls on trees and shrubs in the Czech Republic. J Pest Sci 69:81–83

    Google Scholar 

  • Voigt CA, Schafer W, Salomon S (2008) A comprehensive view on organ-specific synthesis in wheat (Triticum aestivum L.): glucan synthase-like gene expression, callose synthase activity, callose quantification and deposition. Plant Physiol Bioch 44:242–247

    Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wcislo H (1977) Observations on leaves galls of Tilia cordata Mill. induced by Eriophyes tiliae. Acta Biol Crac Ser Bot 20:147–152

    Google Scholar 

  • Weis A, Walton R, Crego C (1988) Reactive plant tissue sites and the population biology of gall makers. Ann Rev Entomol 33:467–486

    Google Scholar 

  • Westphal E (1972) Traces de succion parasitaires par quelques eriophyides cecidogenes. Aspects histochimiques et observations ultrastructurales. Marcellia 37:53–69

    Google Scholar 

  • Westphal E (1974) Cécidogenèse et aspects structuraux de la galle en bourse de l’Eriophyes padi Nal. Sur la feuille de Prunus padus L. Marcellia 38:77–93

    Google Scholar 

  • Westphal E (1977) Morphogenese, ultrastructure et etiologie de quelque galles d’Eriophyes (Acariens). Marcellia 39:193–375

    Google Scholar 

  • Westphal E (1980) Responses of some Solanaceae to attack by the gall mite Eriophyes cladophthyrus. Plant Dis 64:406–409

    Google Scholar 

  • Westphal E (1982) Modification du pH vacuolairedes cellules épidermiques foliaires de Solanum dulcamara soumises à l’action d’un acarien cécidogène. Can J Bot 60:2882–2888

    Google Scholar 

  • Westphal E (1992) Cecidogenesis and resistance phenomena in mite-induced galls. In: Shorthouse J, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 141–156

    Google Scholar 

  • Westphal E, Manson DCM (1996) Feeding effects on host plants: gall formation and other distorsions. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites–their biology, natural enemies and control. Elsevier, Amsterdam, pp 231–250

    Google Scholar 

  • Westphal E, Bronner R, Le Ret M (1981) Changes in leaves of susceptible and resistant Solnum dulcamara infested by the gall mite Eriophyes cladophthirus (Acarina: Eriophyoidea). Can J Bot 59:875–882

    Google Scholar 

  • Westphal E, Dreger F, Bronner R (1990a) The gall mite Aceria cladophthirus. I. Life- cycle, survival outside the gall and symptoms’ expression on susceptible and resistant Solnum dulcamara plants. Exp Appl Acarol 9:183–200

    Google Scholar 

  • Westphal E, Minnot MJP, Kreiter S, Gutierrez J (1990b) Hypersensitive reaction of Solanum dulcamara to the gall mite Aceria cladophthirus causes an increased susceptibility to Tetranychus urticae. Exp Appl Acarol 15:15–26

    Google Scholar 

  • Westphal E, Dreger F, Bronner R (1991) Induced resistance in Solanum dulcamara triggered by the gall mite Aceria cladophthirus (Acari: Eriophyoidea). Exp Appl Acarol 12:111–118

    Google Scholar 

  • Westphal E, Bronner R, Dreger F (1996) Host plant resistance. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid Mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 681–688

    Google Scholar 

  • Wilson MF, O’Dowd DJ (1990) The relationship of leaf size and shoot length in Prunus americana to leaf-galling by mites. Am Midl Nat 123:408–413

    Google Scholar 

  • Zawadzki W (1975) The preliminary observations on injuriousness of Aculus fockeui (Nal & Trt.). Zesz Probl Post Nauk Roln 171:157–166 (in Polish)

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Jan Boczek and Don Griffiths for the helpful comments on the manuscript. The present work was supported partially by the Ministry of Science and Technology of Serbia (Grant #143006B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radmila Petanović.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petanović, R., Kielkiewicz, M. Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I. Exp Appl Acarol 51, 61–80 (2010). https://doi.org/10.1007/s10493-010-9351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-010-9351-2

Keywords

  • Vagrants
  • Mite gall formers
  • Sap-sucking feeders
  • Compatible and incompatible interactions