Skip to main content
Log in

Genetic variation in populations of Allothrombium pulvinum (Acari: Trombidiidae) from Northern Iran revealed by mitochondrial coxI and nuclear rDNA ITS2 sequences

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Allothrombium pulvinum Ewing is a common natural enemy of aphids and some other arthropods. So far, there are no studies that have addressed genetic variation of this predatory mite. We investigated genetic variation of A. pulvinum across its whole known range in Iran. A 410 bp portion of the mitochondrial cytochrome c oxidase subunit I gene (coxI) and 797–802 bp portion of the internal transcribed spacer 2 of rDNA (ITS2) were sequenced for 55 individuals from 11 populations, resulting in 12 and 26 haplotypes, respectively. In the coxI region, haplotype and nucleotide diversities varied among populations from 0.00 to 0.90 and from 0.0000 to 0.0110, respectively. In the ITS2 region they varied from 0.20 to 0.91 and from 0.0006 to 0.0023, respectively. For both gene regions the highest haplotype and nucleotide diversities were detected in population Mahmoud Abad from northern Iran. Statistically significant population differentiation (F ST) was detected in most pair-wise population comparisons. The results of population differentiation for both gene regions were generally congruent indicating that A. pulvinum from Iran consists of genetically different populations. This suggests that A. pulvinum comprises at least two geographically distinct populations or even more than one species. This study is an initial step towards understanding genetic variation of A. pulvinum, a taxon for which little molecular information is available. More intensive sampling and analysis of additional DNA regions are necessary for more detailed classification of this taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Caterino MS, Cho S, Sperling FAH (2000) The current state of insect molecular systematics: a thriving tower of babel. Annu Rev Entomol 45:1–54. doi:10.1146/annurev.ento.45.1.1

    Article  PubMed  CAS  Google Scholar 

  • Chen PR, Zhang Z-Q (1991) Biology of Allothrombium pulvinum Ewing (Acari: Trombidiidae) and its impact on twospotted spider mite (Acari: Tetranychidae) in cotton. J Appl Ent 112:31–37

    Article  Google Scholar 

  • Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol 7:3–14

    Google Scholar 

  • Filatov DA (2002) PROSEQ: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624. doi:10.1046/j.1471-8286.2002.00313.x

    Article  CAS  Google Scholar 

  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Hosseini M, Hatami B, Saboori A (2002) Host preference by Allothrombium pulvinum Ewing (Acari: Trombidiidae) larvae on aphids: Macrosiphum rosae, Aphis gossypii and Hyalopterus amygdali (Homoptera: Aphididae). Exp Appl Acarol 27:297–302. doi:10.1023/A:1023359130396

    Article  PubMed  Google Scholar 

  • Hosseini M, Hatami B, Saboori A, Allahyari H, Ashouri A (2005) Predation by Allothrombium pulvinum on the spider mite Tetranychus urticae and Amphitetranychus viennensis: predation rate, prey preference and functional response. Exp Appl Acarol 37:173–181. doi:10.1007/s10493-005-2846-6

    Article  PubMed  Google Scholar 

  • Hudson RR, Boos DD, Kaplan NL (1992) A statistical test for detecting population subdivision. Mol Biol Evol 9:138–151

    PubMed  CAS  Google Scholar 

  • Krantz GW (1978) A manual of acarology, 2nd edn. Oregon State University Book Stores, Corvallis, OR

    Google Scholar 

  • Lunt DH, Zhang DX, Szymura JM, Hewitt GM (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5:153–165. doi:10.1111/j.1365-2583.1996.tb00049.x

    Article  PubMed  CAS  Google Scholar 

  • Moss WW (1962) The immature stages of the red velvet mite Allothrombium lerouxi (Acari: Trombidiidae). Ann Entomol Soc Am 55:295–303

    Google Scholar 

  • Navajas M, Fenton B (2000) The application of molecular markers in the study of diversity in acarology: a review. Exp Appl Acarol 24:751–774. doi:10.1023/A:1006497906793

    Article  PubMed  CAS  Google Scholar 

  • Navajas M, Cotton D, Kreiter S, Gutierrez J (1992) Molecular approach in spider mites (Acari: Tetranychidae): preliminary data on ribosomal DNA sequences. Exp Appl Acarol 15:211–218. doi:10.1007/BF01246563

    Article  PubMed  CAS  Google Scholar 

  • Navajas M, Gutierrez J, Bonato O, Bolland HR, Mapangou-Divassa S (1994) Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Exp Appl Acarol 18:351–360. doi:10.1007/BF00116316

    Article  PubMed  CAS  Google Scholar 

  • Navajas M, Fournier D, Lagnel J, Boursot P (1996a) Mitochondrial COI sequences in mites: evidence for variation in base composition. Insect Mol Biol 5:1–5. doi:10.1111/j.1365-2583.1996.tb00102.x

    Article  Google Scholar 

  • Navajas M, Gutierrez J, Lagnel J (1996b) Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bull Entomol Res 86:407–417

    CAS  Google Scholar 

  • Navajas M, Gutierrez J, Gotoh T (1997) Convergence of molecular and morphological data reveals phylogenetic information on Tetranychus species and allows the restoration of the genus Amphitetranychus (Acari: Tetranychidae). Bull Entomol Res 87:283–288

    CAS  Google Scholar 

  • Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752. doi:10.1046/j.1365-2540.1998.00349.x

    Article  PubMed  CAS  Google Scholar 

  • Navajas M, Gutierrez J, Lagnel J, Fauvel G, Gotoh T (1999a) DNA sequences and cross-breeding experiments in the hawthorn spider mite Amphitetranychus viennensis reveal high genetic differentiation between Japanese and French populations. Entomol Exp Appl 90:113–122. doi:10.1023/A:1003524217318

    Article  CAS  Google Scholar 

  • Navajas M, Lagnel J, Fauvel G, De Moraes G (1999b) Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Exp Appl Acarol 23:851–859. doi:10.1023/A:1006251220052

    Article  PubMed  CAS  Google Scholar 

  • Navia D, De Moraes G, Roderick G, Navajas M (2005) The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull Entomol Res 95:505–516. doi:10.1079/BER2005382

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nishimura S, Hinomoto N, Takafuji A (2007) The genetic variations among populations of Tetranychus kanzawai complex (Acari: Tetranychidae) indicated by using mitochondrial, ribosomal, and microsatellite DNA markers. J Acarol Soc Jpn 16:109–119. doi:10.2300/acari.16.109

    Article  Google Scholar 

  • Osakabe M, Sakagami Y (1993) Protein differences detected by two-dimensional electrophoresis among local populations of Panonychus citri (McGregor) (Acari: Tetranychidae) in Japan. App Ent Zool 28:497–502

    CAS  Google Scholar 

  • Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant, relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42:239–262. doi:10.1007/s10493-007-9092-z

    Article  PubMed  Google Scholar 

  • Rozas J, Sanchez-Del Barrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497. doi:10.1093/bioinformatics/btg359

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Kravetz S, Misener S (eds) Bioinformatics Methods and Protocols. Humana Press, New Jersey

    Google Scholar 

  • Saboori A, Zhang Z-Q (1996) Biology of Allothrombium pulvinum Ewing (Acari: Trombidiidae) in West Mazandaran, Iran. Exp Appl Acarol 20:137–142. doi:10.1007/BF00051479

    Article  Google Scholar 

  • Saboori A, Hosseini M, Hatami B (2003) Preference of adults of Allothrombium pulvinum Ewing (Acari; Trombidiidae) for eggs of Planococcus citri (Risso) and Pulvinaria aurantii (Cockerell) on citrus leaves in the laboratory. Syst Appl Acarol 8:49–54

    Google Scholar 

  • Saboori A, Hosseini M, Asadi M (2007) Acari of Iran, vol 1. Parasitengone mites of Iran, University of Tehran Press

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Smouse PE, Long JL, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632. doi:10.2307/2413122

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Gene 123:585–595

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Tsagkarakou A, Navajas M, Lagnel J, Pasteur N (1997) Population structure in the spider mite Tetranychus urticae (Acari: Tetranychidae) from crete based on multiple allozymes. Heredity 78:84–92

    Article  PubMed  CAS  Google Scholar 

  • Wohltmann A (2000) The evolution of life histories in parasitengona (Acari: Prostigmata). Acarologia 41:145–204

    Google Scholar 

  • Xie L, Xie R-R, Zhang K-J, Hong X-Y (2008) Genetic relationship between the carmine spider mite Tetranychus cinnabarinus (Boisduval) and the two-spotted mite T. urticae Koch in China based on the mtDNA COI and rDNA ITS2 sequences. Zootaxa 1726:18–32

    Google Scholar 

  • Zhang Z-Q (1991) Parasitism of Acyrthosiphon pisum by Allothrombium pulvinum (Acariformes: Trombidiidae): host attachment site, host size selection, superparasitism and affect on host. Exp Appl Acarol 11:137–147. doi:10.1007/BF01246086

    Article  Google Scholar 

  • Zhang Z-Q (1992a) The adaptive significance of superparasitism in a protelean parasite, Allothrombium pulvinum (Acari: Trombidiidae). Oikos 65:167–168. doi:10.2307/3544900

    Article  Google Scholar 

  • Zhang Z-Q (1992b) Functional response of Allothrombium pulvinum deutonymph (Acari: Trombidiidae) on twospotted spider mites (Acari: Tetranychidae). Exp Appl Acarol 15:249–257. doi:10.1007/BF01246566

    Article  CAS  Google Scholar 

  • Zhang Z-Q (1992c) Notes on the occurrence and distribution of the biocontrol agent, Allothrombium pulvinum Ewing (Acari:Trombidiidae), in a peach orchard in China. J Entomol 113:13–17

    Google Scholar 

  • Zhang Z-Q (1992d) Phototactic and geotactic responses in Allothrombium pulvinum larvae (Acari: Trombidiidae). Exp Appl Acarol 15:41–47. doi:10.1007/BF01193966

    Article  Google Scholar 

  • Zhang Z-Q (1998) Biology and ecology of trombidiid mites (Acari: Trombidioidea). Exp Appl Acarol 22:139–155. doi:10.1023/A:1006002028430

    Google Scholar 

  • Zhang Z-Q, Chen PR (1993) Parasitism of Aphis gossypii (Homoptera: Aphididae) by Allothrombium pulvinum larvae (Acari: Trombidiidae) in cotton field: spatial dispersion and density dependence. Exp Appl Acarol 17:905–912. doi:10.1007/BF02328067

    Article  Google Scholar 

  • Zhang Z-Q, Faraji F (1994) Notes on Allothrombium pulvinum Ewing (Acari: Trombidiidae) new to the fauna of Iran. Acarologia 35:357–360

    Google Scholar 

  • Zhang Z-Q, Norbakhsh H (1995) A new genus and three new species of mites (Acari: Trombidiidae) described from larvae ectoparasitic on aphids from Iran. Eur J Entomol 92:705–718

    Google Scholar 

  • Zhang Z-Q, Xin JL (1989) Biology of Allothrombium pulvinum (Acariformes: Trombidiidae), a potential biological control agent of aphids in China. Exp Appl Acarol 6:101–108. doi:10.1007/BF01201641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Dr. X-R Wang, Umeå University, Sweden, for helpful discussion and comments on the manuscript. We also thank Dr. Gholamhossein Tahmasbi, Pest and Plant Disease Research Institute, Iran, for kindly helping in sampling as well as Ms. Mitra Moezi-pour who helped at the time of field collection. This work was supported by the research grants from Ministry of Education, Culture, Sports, Science and Technology to A.E.S. and N.I. and from the University of Tehran to A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred E. Szmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalili Mahani, M., Inomata, N., Saboori, A. et al. Genetic variation in populations of Allothrombium pulvinum (Acari: Trombidiidae) from Northern Iran revealed by mitochondrial coxI and nuclear rDNA ITS2 sequences. Exp Appl Acarol 48, 273–289 (2009). https://doi.org/10.1007/s10493-009-9241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-009-9241-7

Keywords

Navigation