Skip to main content

Advertisement

Log in

Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

This study investigated the endosymbiotic bacteria living inside the poultry red mite collected from five samples of one commercial farm from the UK and 16 farms from France using genus-specific PCR, PCR-TTGE and DNA sequencing. Endosymbiotic bacteria are intracellular obligate organisms that can cause several phenotypic and reproductive anomalies to their host and they are found widespread living inside arthropods. The farm sampled from the UK was positive for bacteria of the genera Cardinium sp. and Spiroplasma sp. From France, 7 farms were positive for Cardinium sp., 1 farm was positive for Spiroplasma sp., 1 farm was positive for Rickettsiella sp. and 2 farms were positive for Schineria sp. However, it was not possible to detect the presence of the genus Wolbachia sp. which has been observed in other ectoparasites. This study is the first report of the presence of endosymbionts living inside the poultry red mite. The results obtained suggest that it may be possible that these bacterial endosymbionts cause biological modifications to the poultry red mite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beugnet F, Chauve C, Gauthey M, Beert L (1997) Resistance of the red poultry mite to pyrethroids in France. Vet Rec 140:577–579

    PubMed  CAS  Google Scholar 

  • Charlat S, Bourtzis K, Merçot H (2001) Wolbachia-induced cytoplasmic incompatibility. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 621–644

    Google Scholar 

  • Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol 79:239–245. doi:10.1016/S0304-4017(98)00167-8

    Article  PubMed  CAS  Google Scholar 

  • Chirico J, Tauson R (2002) Traps containing acaricides for the control of Dermanyssus gallinae. Vet Parasitol 110:109–116. doi:10.1016/S0304-4017(02)00310-2

    Article  PubMed  CAS  Google Scholar 

  • Chirico J, Eriksson H, Fossum O, Jansson D (2003) The poultry red mite, Dermanyssus gallinae, a potential vector of Erysipelothrix rhusiopathiae causing erysipelas in hens. Med Vet Entomol 17:232–234. doi:10.1046/j.1365-2915.2003.00428.x

    Article  PubMed  CAS  Google Scholar 

  • Desloire S, Valiente Moro C, Chauve C, Zenner L (2006) Comparison of four methods of extracting DNA from D. gallinae (Acari: Dermanyssidae). Vet Res 37:725–732. doi:10.1051/vetres:2006031

    Article  PubMed  CAS  Google Scholar 

  • Enigl M, Schausberger P (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp Appl Acarol 42:75–85. doi:10.1007/s10493-007-9080-3

    Article  PubMed  Google Scholar 

  • Fujii Y, Kubo T, Ishikawa H, Sasaki T (2004) Isolation and characterization of the bacteriophage WO from Wolbachia an arthropod endosymbiont. Biochem Biophys Res Commun 317:1183–1188. doi:10.1016/j.bbrc.2004.03.164

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Nikoh N (2000) Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl Environ Microbiol 66:643–650. doi:10.1128/AEM.66.2.643-650.2000

    Article  PubMed  CAS  Google Scholar 

  • Gotoh T, Noda H, Ito S (2007a) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20. doi:10.1038/sj.hdy.6800881

    Article  PubMed  CAS  Google Scholar 

  • Gotoh T, Sugusawa J, Noda H, Kitashima Y (2007b) Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 42:1–6. doi:10.1007/s10493-007-9072-3

    Article  PubMed  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KP (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  PubMed  CAS  Google Scholar 

  • Holden PR, Brookfield FY, Jones P (1993) Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet 240:213–220. doi:10.1007/BF00277059

    Article  PubMed  CAS  Google Scholar 

  • Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes includes cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond B Biol Sci 270:2185–2190. doi:10.1098/rspb.2003.2475

    Article  Google Scholar 

  • Hurst GDD, der Schulenburg JHG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard J, Volkl W, Stothamer R, Majerus MEN (1999) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8:133–139. doi:10.1046/j.1365-2583.1999.810133.x

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405. doi:10.1046/j.1365-2583.2000.00203.x

    Article  PubMed  CAS  Google Scholar 

  • Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OAE, Giangaspero A (2008) Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field population from Italy. Exp Appl Acarol. doi:10.1007/s10493-008-9224-0

    PubMed  Google Scholar 

  • Montenegro H, Petherwick AS, Hurst GDD, Klaczko LB (2006) Fitness effects of Wolbachia and Spiroplasma in Drosophila melanogaster. Genetica 127:207–215. doi:10.1007/s10709-005-3766-4

    Article  PubMed  CAS  Google Scholar 

  • Morimoto S, Kurtti TJ, Noda H (2006) In vitro cultivation and antibiotic susceptibility of a Cytophaga-like intracellular symbiont isolated from the tick Ixodes scapularis. Curr Microbiol 52:324–329. doi:10.1007/s00284-005-0349-7

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63:3926–3932

    PubMed  CAS  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702. doi:10.1073/pnas.89.7.2699

    Article  PubMed  Google Scholar 

  • Perlman SJ, Kelly SE, Zchori-Fein E, Hunter MS (2006) Cytoplasmic incompatibility and multiple symbiont infection in the ash whitefly parasitoid, Encarsia inaron. Biol Control 39:474–480. doi:10.1016/j.biocontrol.2006.05.015

    Article  Google Scholar 

  • Perlman SJ, Kelly SE, Hunter MS (2008) Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp. Genetics 178:1003–1011. doi:10.1534/genetics.107.083071

    Article  PubMed  CAS  Google Scholar 

  • Pool JE, Wong A, Aquadro CF (2006) Finding of male-killing Spiroplasma infecting Drosophila melanogaster in Africa implies transatlantic migration of this endosymbiont. Heredity 97:27–32. doi:10.1038/sj.hdy.6800830

    Article  PubMed  CAS  Google Scholar 

  • Reeves WK, Dowling APG, Dasch GA (2006) Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exp Appl Acarol 38:181–188. doi:10.1007/s10493-006-0007-1

    Article  PubMed  Google Scholar 

  • Sparagano OAE, De Luna CJ (2008) From population structure to genetically-engineered vectors: new ways to control vector-borne diseases? Infect Genet Evol 8:520–525. doi:10.1016/j.meegid.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Sutakova G, Arutunyan ES (1990) The spider-mite predator Phytoseiulus persimilis and its association with microorganisms—an electron-microscopy study. Acta Entomol Bohemoslov 87:431–434

    Google Scholar 

  • Tinsley MC, Majerus MEN (2006) A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology 132:757–765. doi:10.1017/S0031182005009789

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Kovacs G, Schumann P, Kovacs AL, Steiner U, Halbritter A, Marialigeti K (2001) Schineria larvae gen. nov. sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 51:401–407

    PubMed  CAS  Google Scholar 

  • Toth EM, Hell E, Kovacs G, Borsodi AK, Marialigeti K (2006) Bacteria isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb Ecol 51:13–21. doi:10.1007/s00248-005-0090-6

    Article  PubMed  CAS  Google Scholar 

  • Valiente Moro C, Chauve C, Zenner L (2005) Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 12:99–109

    PubMed  CAS  Google Scholar 

  • Valiente Moro C, Fravalo P, Amelot M, Chauve C, Zenner L, Salvat G (2007) Colonization and organ invasion in chicks experimentally infected with Dermanyssus gallinae contaminated by Salmonella Enteritidis. Avian Pathol 36:307–311. doi:10.1080/03079450701460484

    Article  Google Scholar 

  • Valiente Moro C, Thioulouse J, Chauve C, Normand P, Zenner L (2008) Bacterial taxa associated with hematophagous mite Dermanyssus gallinae detected by 16S rDNA amplification and TTGE fingerprinting. Res Microbiol. doi:10.1016/j.resmic.2008.10.006

    PubMed  Google Scholar 

  • Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482. doi:10.1126/science.1060411

    Article  PubMed  CAS  Google Scholar 

  • Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc Lond B Biol Sci 270:1857–1865. doi:10.1098/rspb.2003.2425

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Werren JH, Skinner SW, Huger AM (1986) Male-killing bacteria in a parasitic wasp. Science 231:990–992. doi:10.1126/science.3945814

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016. doi:10.1111/j.1365-294X.2004.02203.x

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci USA 98:12555–12560. doi:10.1073/pnas.221467498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the European Commission through the STREP project “RESCAPE”, contract no. 036018, under the sixth Framework Programme, priority 5, food quality and safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos J. De Luna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luna, C.J., Moro, C.V., Guy, J.H. et al. Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae). Exp Appl Acarol 48, 105–113 (2009). https://doi.org/10.1007/s10493-008-9230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9230-2

Keywords