Skip to main content
Log in

The nuclear genome of the phytoseiid Metaseiulus occidentalis (Acari: Phytoseiidae) is among the smallest known in arthropods

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The genome size of the phytoseiid Metaseiulus (=Typhlodromus or Galendromus) occidentalis (Nesbitt) needs to be estimated before the whole nuclear genome can be sequenced. Two different procedures were used to estimate the genome size of M. occidentalis; (1) flow cytometry (Marescalchi et al. in Genome 33:789–793, 1990) and (2) quantitative real-time PCR (qRT-PCR) (Wilhelm et al. in Nucleic Acids Res 31:e56, 2003). Fluorescence intensity of propidium iodide-stained nuclei of M. occidentalis was measured by flow cytometry using females, males, and eggs. Only the eggs yielded peaks, which ranged in size from 35 to 160 Mb, with a tall peak of 140 Mb in 1-day-old eggs and 65 Mb in 2-day-old eggs, respectively. However, the peaks are broad and do not provide an accurate estimate. The qRT-PCR procedure required single-copy nuclear gene sequences from this phytoseiid. This was accomplished by designing degenerate primers, amplifying the Actin and EF1α sequences from M. occidentalis, and then designing M. occidentalis-specific primers that amplified a unique sequence. The standard qRT-PCR protocol was inefficient and amplification failed frequently, so we developed a high-fidelity qRT-PCR protocol, which utilizes a mix of two DNA polymerases (Taq and a proof-reading Tgo or ACCUZYME) to consistently amplify sequences. This allowed us to estimate the nuclear genome size of M. occidentalis as 88–90 ± 5 Mb. When compared to other arthropod genomes, this appears to be very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195. doi:10.1126/science.287.5461.2185

    Article  PubMed  Google Scholar 

  • Barnes W (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from λ bacterophage templates. Proc Natl Acad Sci USA 91:2216–2220. doi:10.1073/pnas.91.6.2216

    Article  PubMed  CAS  Google Scholar 

  • Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472. doi:10.1242/dev.00099

    Article  PubMed  CAS  Google Scholar 

  • DeSalle R, Gregory TR, Johnston JS (2005) Preparation of samples for comparative studies of arthropod chromosomes: visualization, in situ hybridization, and genome size estimation. Mol Enzymol 395:460–488. doi:10.1016/S0076-6879(05)95025-8

    Article  CAS  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytochemistry 51A:127–128

    Google Scholar 

  • Fingen-Eigen M, Domdey H, Kohrer K (1996) The ribosomal protein gene RPS3 is an essential single copy gene of the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 223:397–403. doi:10.1006/bbrc.1996.0905

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayers NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. doi:10.1126/science.220.4601.1049

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Scott JG (2006) Use of quantitative real-time polymerase chain reaction to estimate the size of the house-fly Musca domestica genome. Insect Mol Biol 15:835–837. doi:10.1111/j.1365-2583.2006.00690.x

    Article  PubMed  CAS  Google Scholar 

  • Geraci NS, Johnston JS, Robinson P, Wikel SK, Hill CA (2007) Variation in genome size of argasid and ixodid ticks. Insect Biochem Mol Biol 37:399–408. doi:10.1016/j.ibmb.2006.12.007

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Crain WR, Ruderman JV, Moore GP, Barnett TR, Higgins RC, Gelfand RA, Galau GA, Britten RJ, Davidson EH (1975) DNA sequence organization in genomes of five marine invertebrates. Chromosoma 51:225–251. doi:10.1007/BF00284817

    Article  PubMed  CAS  Google Scholar 

  • Grbic M, Khila A, Lee K-Z, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy L (2007) Mity model: Tetranychus urticae, a candidate chelicerate model organism. Bioessays 29:489–496. doi:10.1002/bies.20564

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR, Shorthouse DP (2003) Genome sizes of spiders. J Hered 94:285–290. doi:10.1093/jhered/esg070

    Article  PubMed  CAS  Google Scholar 

  • Guerrero FD, Nene VM, George JE, Baker SC, Willadsen P (2005) Sequencing a new target genome: The Boophilus microplus (Acari: Ixodidae) genome project. J Med Entomol 43:9–16. doi:10.1603/0022-2585(2006)043[0009:SANTGT]2.0.CO;2

    Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149. doi:10.1126/science.1076181

    Article  PubMed  CAS  Google Scholar 

  • Hoy MA (1979) Parahaploidy of the “arrhenotokous” predator, Metaseiulus occidentalis (Acarina: Phytoseiidae) demonstrated by X-irradiation of males. Entomol Exp Appl 26:97–106

    Google Scholar 

  • Hoy MA (1984) Genetic improvement of a biological control agent: multiple pesticide resistance and nondiapause in Metaseiulus occidentalis (Nesbitt) (Phytoseiidae). In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 2. Ellis Horwood, Chichester, pp 673–679

    Google Scholar 

  • Hoy MA (1985) Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu Rev Entomol 30:345–370. doi:10.1146/annurev.en.30.010185.002021

    Article  Google Scholar 

  • Hoy MA (2006) Perspectives on the development of genetically modified arthropod natural enemies for agricultural pest management programmes. CAB Reviews: Perspectives in Agriculture, Veterinary Science. Nutr Nat Resour 1(058):12

    Google Scholar 

  • Hoy MA, Standow KA (1982) Inheritance of resistance to sulfur in the spider mite predator Metaseiulus occidentalis. Entomol Exp Appl 31:316–323

    Google Scholar 

  • Hoy MA, Jeyaprakash A, Nguyen R (2001) Long PCR is a sensitive method for detecting Liberobacter asiaticum in parasitoids undergoing risk assessment in quarantine. Biol Control 22:278–287. doi:10.1006/bcon.2001.0973

    Article  CAS  Google Scholar 

  • Huffaker CB, Van De Vrie M, McMurtry JA (1970) Ecology of tetranychid mites and their natural enemies: a review. II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia 40:391–458

    Google Scholar 

  • Jeyaprakash A, Hoy MA (1995) Complete sequence of a mariner transposable element from the predatory mite Metaseiulus occidentalis isolated by an inverse PCR approach. Insect Mol Biol 4:31–39. doi:10.1111/j.1365-2583.1995.tb00005.x

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405. doi:10.1046/j.1365-2583.2000.00203.x

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2004) Multiple displacement amplification in combination with high-fidelity PCR improves detection of bacteria from single females or eggs of Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). J Invertebr Pathol 86:111–116. doi:10.1016/j.jip.2004.05.005

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2007) The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391:264–274. doi:10.1016/j.gene.2007.01.012

    Article  PubMed  CAS  Google Scholar 

  • Johnston JS, Yoon KS, Strycharz JP, Pittendrigh BR, Clark JM (2007) Body lice and head lice (Anoplura: Pediculidae) have the smallest genomes of any hemimetabolous insect reported to date. J Med Entomol 44:1009–1012. doi:10.1603/0022-2585(2007)44[1009:BLAHLA]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Marescalchi O, Scali V, Zuccotti M (1990) Genome size in parental and hybrid species of Bacillus (Insecta, Phasmatodea) from southeastern Sicily: a flow cytometric analysis. Genome 33:789–793

    Google Scholar 

  • Navajas M, Lagnel J, Fauvel G, De Moraes G (1999) Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Exp Appl Acarol 23:851–859. doi:10.1023/A:1006251220052

    Article  PubMed  CAS  Google Scholar 

  • Nelson-Rees WA, Hoy MA, Roush RT (1980) Heterochromatization, chromatin elimination and haploidization in the parahaploid mite Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Chromosoma 77:263–276. doi:10.1007/BF00286052

    Article  PubMed  CAS  Google Scholar 

  • Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723. doi:10.1126/science.1138878

    Article  PubMed  CAS  Google Scholar 

  • Panzera F, Ferrandis I, Ramsey J, Salazar-Schettino PM, Cabrera M, Monroy C, Bargues MD, Mas-Goma S, O’Connor JE, Angulo VM, Jaramillo N, Perez R (2007) Genome size determination in chagas disease transmitting bugs (Hemiptera-Triatominae) by flow cytometry. Am J Trop Med Hyg 76:516–521

    PubMed  CAS  Google Scholar 

  • Presnail JK, Hoy MA (1992) Stable genetic transformation of a beneficial arthropod, Metaseiulus occidentalis (Acari: Phytoseiidae), by a microinjection technique. Proc Natl Acad Sci USA 89:7732–7736. doi:10.1073/pnas.89.16.7732

    Article  PubMed  CAS  Google Scholar 

  • Rasch EM, Connelly BA (2005) Genome size and endonuclear DNA replication in spiders. J Morphol 265:209–214. doi:10.1002/jmor.10352

    Article  PubMed  CAS  Google Scholar 

  • Regier JC, Schultz JW (1997) Molecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods. Mol Biol Evol 14:902–913

    PubMed  CAS  Google Scholar 

  • Roush RT, Hoy MA (1981) Genetic improvement of Metaseiulus occidentalis: selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. J Econ Entomol 74:138–141

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, vol 2. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2006) Quantification of the retrotransposan BARE-1 reveals the dynamic nature of the barley genome. Genome 49:389–396. doi:10.1139/G05-119

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008) The evolution of genome size in ants. BMC Evol Bio 8:64 (http://www.biomedcentral.com/1471-2148/8/64)

    Google Scholar 

  • Ullmann AJ, Lima CMR, Guerrero FD, Piesman J, Black WC (2005) Genome size and organization in the blacklegged tick, Ixodes scapularis and the Southern cattle tick, Boophilus microplus. Insect Mol Biol 14:217–222. doi:10.1111/j.1365-2583.2005.00551.x

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm J, Pingoud A, Hahn M (2003) Real-time PCR-based method for the estimation of genome sizes. Nucleic Acids Res 31:e56

    Article  PubMed  Google Scholar 

  • Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY, Li B et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940. doi:10.1126/science.1102210

    Article  PubMed  Google Scholar 

  • Zdobnov EM, von-Mering C, Letunic I et al (2002) Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298:149–159. doi:10.1126/science.1077061

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Davies, Fischer, and Eckes endowment to M. A. Hoy and the Institute of Food and Agricultural Sciences at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayyamperumal Jeyaprakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyaprakash, A., Hoy, M.A. The nuclear genome of the phytoseiid Metaseiulus occidentalis (Acari: Phytoseiidae) is among the smallest known in arthropods. Exp Appl Acarol 47, 263–273 (2009). https://doi.org/10.1007/s10493-008-9227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9227-x

Keywords

Navigation