Skip to main content
Log in

Influence of leaf trichomes on predatory mite (Typhlodromus pyri) abundance in grape varieties

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Non-glandular leaf trichomes positively influence the abundance of many phytoseiid mites. We characterized the influence of grape leaf trichomes (domatia, hairs, and bristles) on Typhlodromus pyri Scheuten abundance over two years in a common garden planting of many grape varieties and 2 years of sampling in a commercial vineyard. In general, a lack of trichomes was associated with much lower predator numbers and in the case of Dechaunac, a cultivar with almost no trichomes, very few T. pyri were found. Phytoseiid abundance was best predicted by a model where domatia and hair had an additive effect (r 2 = 0.815). Over two years of sampling at a commercial vineyard there were T. pyri present on all of the 5 cultivars except Dechaunac. At the same time, European red mite prey were present on Dechaunac alone. These results suggest that on grape cultivars lacking leaf trichomes, T. pyri likely will not attain sufficient densities to provide biological control of European red mite, despite presence of the mite food source. The relationship between leaf trichomes and phytoseiid abundance that is observed at the scale of single vines in a garden planting appears to also be manifest at the scale of a commercial vineyard. Because persistence of predatory mites in or nearby the habitats of prey mites is important for effective mite biological control, leaf trichomes, through their influence on phytoseiid persistence, may be critical for successful mite biological control in some systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal AA (2000) Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Curr Opin Plant Biol 3:329–335. doi:10.1016/S1369-5266(00)00089-3

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA, Karban R (1997) Domatia mediate plant-arthropod mutualism. Nature 387:562–563. doi:10.1038/42384

    Article  CAS  Google Scholar 

  • Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Brouwer YM, Clifford HT (1990) An annotated list of domatia-bearing species. Notes Jodrell Lab 12:1–33

    Google Scholar 

  • Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape cultivars: a case study. Exp Appl Acarol 20:1–22

    Google Scholar 

  • Croft BA, Kim SS, Kim DI (1995) Leaf residency and interleaf movement of four phytoseiid mites (Acari: Phytoseiidae) on apple. Environ Entomol 24:1344–1351

    Google Scholar 

  • Downing RS, Moilliet TK (1967) Relative densities of predacious and phytophagous mites on three cultivars of apple trees. Can Entomol 99:733–741

    Google Scholar 

  • Duso C (1992) Role of Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards: III. Influence of variety characteristics on the success of A. aberrans and T. pyri releases. J Appl Entomol 114:455–462

    Google Scholar 

  • Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23:741–763. doi:10.1023/A:1006297225577

    Article  PubMed  CAS  Google Scholar 

  • Duso C, Pasini M, Pellegrini M (2003) Distribution of the predatory mite Typhlodromus pyri (Acari: Phytoseiidae) on different apple cultivars. Biocontrol Sci Technol 13:671–681. doi:10.1080/09583150310001606264

    Article  Google Scholar 

  • English-Loeb G, Norton AP, Walker MA (2002) Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding. Entomol Exp Appl 104:307–319. doi:10.1023/A:1021233027023

    Article  Google Scholar 

  • English-Loeb G, Norton AP, Gadoury D, Seem R, Wilcox W (2005) Tri-trophic interactions among grapevines, a fungal pathogen, and a mycophagous mite. Ecol Appl 15:1679–1688. doi:10.1890/04-1939

    Article  Google Scholar 

  • Faraji F, Janssen A, Sabelis MW (2002) The benefits of clustering eggs: the role of egg predation and larval cannibalism in a predatory mite. Oecologia 131:20–26. doi:10.1007/s00442-001-0846-8

    Article  Google Scholar 

  • Grostal P, O’Dowd DJ (1994) Plants, mites, and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97:308–315

    Google Scholar 

  • IBPGR/OIV (International Board for Plant Genetic Research/Office International de la Vigne et du Vin) (1989) Minimal descriptor list for grapevine varieties. Update of IBPRG/83/154 grape descriptors. IBPGR Executive Secretariat, Rome

    Google Scholar 

  • Karban R, English-Loeb G, Walker MA, Thaler J (1995) Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp Appl Acarol 19:189–197. doi:10.1007/BF00130822

    Article  Google Scholar 

  • Kreiter S, Tixier M-S, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environ Entomol 31:648–660

    Google Scholar 

  • McMurtry JA (1992) Dynamics and potential impact of ‘generalist’ phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp Appl Acarol 14:371–382. doi:10.1007/BF01200574

    Article  Google Scholar 

  • Monks A, O’Connell DM, Lee WG, Bannister JM, Dickinson KJM (2007) Benefits associated with the domatia mediated tritrophic mutualism in the shrub Coprosma lucida. Oikos 116:873–881. doi:10.1111/j.0030-1299.2007.15654.x

    Article  Google Scholar 

  • Norton AP, English-Loeb G, Gadoury DM, Seem RC (2000) Mycophagous mites and foliar pathogens: leaf domatia mediate tritrophic interactions in grapes. Ecology 81:490–499

    Article  Google Scholar 

  • Norton AP, English-Loeb G, Belden E (2001) Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators. Oecologia 126:535–542. doi:10.1007/s004420000556

    Article  Google Scholar 

  • Nyrop J, English-Loeb G, Roda A (1998) Conservation biological control of spider mites in perennial cropping systems. In: Barbosa P (ed) Conservation biological control. Academic Press, San Diego, pp 307–333

    Chapter  Google Scholar 

  • O’Dowd DJ, Pemberton RW (1994) Leaf domatia in Korean plants: floristics, frequency, and biogeography. Vegetatio 114:137–149

    Google Scholar 

  • O’Dowd DJ, Willson MF (1989) Leaf domatia and mites on Australasian plants: ecological and evolutionary implications. Biol J Linn Soc Lond 37:191–236

    Article  Google Scholar 

  • O’Dowd DJ, Willson MF (1991) Associations between mites and leaf domatia. Trends Ecol Evol 6:179–182. doi:10.1016/0169-5347(91)90209-G

    Article  Google Scholar 

  • Pemberton RW, Turner CE (1989) Occurrence of predatory and fungivorous mites in leaf domatia. Am J Bot 76:105–112. doi:10.2307/2444779

    Article  Google Scholar 

  • Poppy GM, Sutherland JP (2004) Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants. Physiol Entomol 29:257–268. doi:10.1111/j.0307-6962.2004.00382.x

    Article  Google Scholar 

  • Putman WL, Herne DHC (1964) Relations between Typhlodromus caudiglans Schuster (Acarina: Phytoseiidae) and phytophagous mites in Ontario peach orchards. Can Entomol 96:925–943

    Article  Google Scholar 

  • Roda A, Nyrop J, Dicke M, English-Loeb G (2000) Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia 125:428–435. doi:10.1007/s004420000462

    Article  Google Scholar 

  • Roda A, Nyrop JP, English-Loeb G (2003) Leaf pubescence mediates abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29:193–211. doi:10.1023/A:1025874722092

    Article  PubMed  CAS  Google Scholar 

  • Romero GQ, Benson WW (2005) Biotic interactions of mites, plants and leaf domatia. Curr Opin Plant Biol 8:436–440. doi:10.1016/j.pbi.2005.05.006

    Article  PubMed  CAS  Google Scholar 

  • Sabelis MW, Van Baalen M, Bakker FM, Bruin J, Drukker B, Egas M et al (1999) The evolution of direct and indirect plant defence against herbivorous arthropods. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell Science Ltd, Oxford, pp 109–166

    Google Scholar 

  • Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116:807–817. doi:10.1111/j.0030-1299.2007.15895.x

    Article  Google Scholar 

  • StataCorp (2007) Stata statistical software: release 10. StataCorp, College Station, TX

    Google Scholar 

  • Walde SJ, Nyrop JP, Hardman JM (1992) Dynamics of Panonychus ulmi and Typhlodromus pyri: factors contributing to persistence. Exp Appl Acarol 14:261–291. doi:10.1007/BF01200568

    Article  Google Scholar 

  • Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Annu Rev Entomol 41:101–114. doi:10.1146/annurev.en.41.010196.000533

    Article  PubMed  CAS  Google Scholar 

  • Walter DE, Denmark HA (1991) Use of leaf domatia on wild grape (Vitis munsoniana) by arthropods in central Florida. Fla Entomol 74:440–446. doi:10.2307/3494838

    Article  Google Scholar 

  • Willson MF (1991) Foliar shelters for mites in the Eastern deciduous forest. Am Midl Nat 126:111–117. doi:10.2307/2426155

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Bill Srmack for allowing us to collect leaf samples from the National Clonal Germplasm Repository vineyard in Geneva, NY. Joe Ogrodnick provided photographic expertise. Karen Wentworth, Amy Loveland, Carol Herring, Milo Bonacci, and Jeanie McCann provided laboratory assistance. A special thanks to Amy Roda for guidance and support. This work was supported by the NJ Shaulis Scholarship in viticulture and the New York State Wine and Grape Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Loughner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loughner, R., Goldman, K., Loeb, G. et al. Influence of leaf trichomes on predatory mite (Typhlodromus pyri) abundance in grape varieties. Exp Appl Acarol 45, 111–122 (2008). https://doi.org/10.1007/s10493-008-9183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9183-5

Keywords

Navigation