Skip to main content
Log in

Topically applied myco-acaricides for the control of cattle ticks: overcoming the challenges

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

In the absence of commercially viable and environmentally friendly options, the management of cattle ticks is heavily dependent on the use of chemical acaricides. Due to recent advances in production, formulation and application technology, commercial fungus-based biological pesticides (myco-insecticides, myco-acaricides) are becoming increasingly popular for the control of plant pests; however, they have not been used against animal ectoparasites. The literature clearly demonstrates that entomopathogenic fungi are pathogenic to ticks under laboratory conditions. Pasture applications have also shown promise while experiments on topical application have had variable results. These results suggest that major research hurdles still exist especially for the latter. Although literature on ticks and their interactions with entomopathogenic fungi exists, there is not a clear understanding on how this can be influenced by the microenvironment of the cattle skin surface. This paper critically reviews pathogen, tick target and host skin microenvironmental factors that potentially affect pathogenicity of the applied entomopathogen. Factors influencing the route of infection for topically applied myco-acaricides are also reviewed. Major researchable constraints and recommendations are identified and prioritized. In particular, there is the need for basic studies to understand the interaction of entomopathogenic fungi with the components of the skin microenvironment, to identify suitable strains, and to develop improved formulations to overcome the various challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen TE, Bennett JW, Donegan SM, Hutchingson CD (1970) Moisture, its accumulation and site of evaporation in the coats of sweating cattle. J Agric Sci 74:247–258

    Google Scholar 

  • Al-Mazra’awi MS, Shipp L, Broadbent B, Kevan K (2006) Biological control of Lygus lineoralis (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol Control 37:89–97. doi:10.1016/j.biocontrol.2005.11.014

    Google Scholar 

  • Alonso-Díaz MA, García L, Galindo-Velasco E, Lezama-Gutierrez R, Angel-Sahagún CA, Rodríguez-Vivas RI et al (2007) Evaluation of Metarhizium anisopliae (Hyphomycetes) for the control of Boophilus microplus (Acari: Ixodidae) on naturally infested cattle in the Mexican tropics. Vet Parasitol 147:336–340. doi:10.1016/j.vetpar.2007.03.030

    PubMed  Google Scholar 

  • Alves RT, Bateman RP, Gunn J, Prior C, Leather SR (2002) Effects of different formulations on viability and medium term storage of Metarhizium anisopliae conidia. Neotrop Entomol 31:91–99. doi:10.1590/S1519-566X2002000100013

    Google Scholar 

  • Aquino de Muro M, Moore D, Atkin D, Edgington S (2003) Sheep Scab Project ODO538: studies on the biological control of the sheep scab mite, Psoroptes ovis, using entomopathogenic fungi. Report for Department for Environment, Food and Rural Affairs (DEFRA), Government of the United Kingdom, 8 pp

  • Baker EW, Evans TM, Gould DJ, Hull WB, Keegan HL (1956) Miscellaneous mesostigmatic mites. In: Baker EW, Evans TM, Gould DJ, Hull WB, Keegan HL (eds) A manual of parasitic mites. National Pest Control Association, Inc., United States of America

    Google Scholar 

  • Barker SC, Murrell A (2004) Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129:S15–S36. doi:10.1017/S0031182004005207

    PubMed  Google Scholar 

  • Barnes SE, Moore D (1997) The effect of fatty, organic or phenolic acids on the germination of conidia of Metarhizium flavoviride. Mycol Res 101:662–666. doi:10.1017/S0953756296003152

    CAS  Google Scholar 

  • Bateman RP (1997) Methods of application of microbial pesticide formulations for the control of grasshopper and locusts. Mem Entomol Soc Can 171:69–81

    Google Scholar 

  • Bateman RP, Alves RT (2000) Delivery systems for mycoinsecticides using oil-based formulations. Asp Appl Biol 57:163–170

    Google Scholar 

  • Bateman RP, Chapple A (2001) The spray application of mycopesticide formulations. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents—progress, problems and potential. CAB International, Wallingford

    Google Scholar 

  • Benjamin MA, Zhioua E, Ostfeld RS (2002) Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). J Med Entomol 39:723–728

    PubMed  Google Scholar 

  • Berman A, Volcani R (1961) Seasonal and regional variations in coat characteristics of dairy cattle. Aust J Agric Res 12:528–538. doi:10.1071/AR9610528

    Google Scholar 

  • Beugnet F, Chardonnet L (1995) Tick resistance to pyrethroids in New Caledonia. Vet Parasitol 56:325–338. doi:10.1016/0304-4017(94)00686-7

    PubMed  CAS  Google Scholar 

  • Bittencourt VREP, Massard CL, de Lima AF (1994) Ação do fungo Metarhizium anisopliae em ovos e larvas do carrapato Boophilus microplus. Rev Univ Rural Ser Cienc Vida 16:41–47

    Google Scholar 

  • Bittencourt VREP, Massard CL, Veigas EDC, de Lima AF (1995a) Isolamento e cultivo do fungo Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883, a partir do carrapato Boophilus microplus (Canestrini, 1887) artificialmente infectado. Rev Univ Rural Ser Cienc Vida 17:55–60

    Google Scholar 

  • Bittencourt VREP, Massard CL, de Lima AF (1995b) Dinâmica da infecção do carrapato Boophilus microplus pelo fungo Metarhizium anisopliae. Rev Univ Rural Ser Cienc Vida 17:83–88

    Google Scholar 

  • Bittencourt VREP, Peralva SFLDS, de Souza EJ, Mascarenhas AG, Alves SG (1997) Ação do dois isolados do fungo entomopatogênico Beauveria bassiana sobre algumas charísticas biológicas de fêmeas ingurgitadas de Boophilus microplus em laboratorio. Rev Univ Rural Ser Cienc Vida 19:65–71

    Google Scholar 

  • Brooks JA, Aquino de Muro M, Moore D, Taylor MA, Wall R (2004) Growth and pathogenicity of isolates of the fungus Metarhizium anisopliae against the parasitic mite, Psoroptes ovis: effects of temperature and formulation. Pest Manag Sci 60:1043–1049. doi:10.1002/ps.910

    PubMed  CAS  Google Scholar 

  • Burgner D, Eagles G, Burgess M, Procopis P, Rogers M, Muir D et al (1998) Disseminated invasive infection due to Metarrhizium [sic] anisopliae in an immunocompromised child. J Clin Microbiol 36:1146–1150

    PubMed  CAS  Google Scholar 

  • Butt TM, Goettel MS (2000) Bioassays of entomopathogenic fungi. In: Navon A, Ascher KRS (eds) Bioassays of entomopathogenic microbes and nematodes. CAB International, Wallingford

    Google Scholar 

  • Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey-bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Technol 8:533–538. doi:10.1080/09583159830045

    Google Scholar 

  • Butt TM, Jackson CW, Magan N (2001) Introduction—fungal biological control agents: progress, problems and potential. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents—progress, problems and potential. CAB International, Wallingford

    Google Scholar 

  • Campos RA, Arruda W, Boldo JT, da Silva MV, de Barros NV, de Azevedo JL et al (2005) Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr Microbiol 50:257–261. doi:10.1007/s00284-004-4460-y

    PubMed  CAS  Google Scholar 

  • Cannon PF, Kirk PM (2007) Fungal families of the world. CAB International, Wallingford

    Google Scholar 

  • Casasolas-Oliver A (1991) Pathogenicity of Rhizopus thailandensis on engorged females of Rhipicephalus sanguineus (Acari: Ixodide) host–pathogen interaction. Rev Iberoam Micol 8:75–78

    Google Scholar 

  • Chandler D, Davidson G, Pell JK, Shaw K, Sunderland KD (2000) Fungal biocontrol of the Acari. Biocontrol Sci Technol 10:357–384. doi:10.1080/09583150050114972

    Google Scholar 

  • Correia ACB, Fiorin AC, Monteiro AC (1998) Effects of Metarhizium anisopliae on the tick Boophilus microplus (Acari: Ixodidae) in stabled cattle. J Invertebr Pathol 71:189–191. doi:10.1006/jipa.1997.4719

    Google Scholar 

  • Cumming GS, Van Vuuren DP (2006) Will climate change affect ectoparasite species ranges? Glob Ecol Biogeogr 15:486–497

    Google Scholar 

  • da Costa GL, Sarquis MIM, de Moraes AML, Bittencourt VREP (2002) Isolation of Beauveria bassiana and Metarhizium anisopliae var. anisopliae from Boophilus microplus tick (Canestrini, 1887), in Rio de Janeiro State, Brazil. Mycopathology 154:207–209. doi:10.1023/A:1016388618842

    Google Scholar 

  • de Castro ABA, Bittencourt VREP, Daemon E, Viegas EDC (1997) Eficácia do fungo Metarhizium anisopliae sobre o carrapato Boophilus microplus em teste de estábulo. Rev Univ Rural Ser Cienc Vida 19:73–82

    Google Scholar 

  • Dillon RJ, Charnley AK (1985) A technique for accelerating and synchronising germination of conidia of the entomopathogenic fungus Metarhizium anisopliae. Arch Microbiol 142:204–206. doi:10.1007/BF00447069

    CAS  Google Scholar 

  • Downing DT, Lindholm JS (1982) Skin surface lipids of the cow. Comp Biochem Physiol 73B:327–330

    CAS  Google Scholar 

  • Environmental Protection Agency (2002) Biopesticides registration action document. Metarhizium anisopliae strain F52 (PC Code 029056). http://www.epa.gov/oppbppd1/biopesticides/ingredients/fr_notices/frnotices_029056.htm. Accessed 14 June 2002

  • Evans GO (1992) Principles of acarology. CAB International, Wallingford

    Google Scholar 

  • Evans HC, Prior C (1990) Entomopathogenic fungi. In: Rosen D (ed) Armored scale insects, their biology, natural enemies and control. World crop pests, vol 4B. Elsevier Science Publishers, Amsterdam, The Netherlands, pp 3–17

    Google Scholar 

  • Frazzon APG, Junior IDV, Masuda A, Shrank A, Vainstein MH (2000) In vitro assessment of Metarhizium anisopliae isolates to control the cattle tick Boophilus microplus. Vet Parasitol 94:117–125. doi:10.1016/S0304-4017(00)00368-X

    PubMed  CAS  Google Scholar 

  • Freimoser FM, Screen S, Bagga S, Hu G, St. Leger R (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect host. Microbiology 149:239–247. doi:10.1099/mic.0.25761-0

    PubMed  CAS  Google Scholar 

  • George JE, Pound JM, Davey RB (2004) Chemical control of ticks on cattle and resistance of these parasites to acaricides. Parasitology 129:S353–S366. doi:10.1017/S0031182003004682

    Google Scholar 

  • Gindin G, Samish M, Alekseev E, Glazer I (2001) The susceptibility of Boophilus annulatus (Ixodidae) ticks to entomopathogenic fungi. Biocontrol Sci Technol 11:111–118. doi:10.1080/09583150020029790

    Google Scholar 

  • Gindin G, Samish M, Zangi G, Mishoutchenko A, Glazer I (2002) The susceptibility of different species and stages of ticks to entomopathogenic fungi. Exp Appl Acarol 28:283–288. doi:10.1023/A:1025379307255

    PubMed  Google Scholar 

  • Ginsberg HS, Lebrun RA, Heyer K, Zhioua E (2002) Potential nontarget effects of Metarhizium anisopliae (Deuteromycete) used for biological control of ticks (Acari: Ixodidae). Environ Entomol 31:1191–1196

    Google Scholar 

  • Goettel MS, Poprawski TJ, Vandenberg JD, Li Z, Roberts DW (1990) Safety to nontarget invertebrates of fungal biocontrol agents. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Graf JF, Gogolewski R, Leach-Bing N, Sabatini GA, Molento MB, Bordin EL et al (2004) Tick control: an industry point of view. Parasitology 129:S427–S442. doi:10.1017/S0031182004006079

    PubMed  Google Scholar 

  • Hassan AEM, Dillon RJ, Charnley AK (1989) Influence of accelerating germination of conidia on the pathogenicity of Metarhizium anisopliae for Manduca sexta. J Invertebr Pathol 54:277–279. doi:10.1016/0022-2011(89)90040-2

    Google Scholar 

  • Hedimbi M, Kaaya GP, Singh S, Chimwamurombe PM, Gindin G, Glazer I et al (2008) Protection of Metarhizium anisopliae conidia from ultraviolet radiation and their pathogenicity to ticks. Exp Appl Acarol 45 (this issue)

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE et al (2007) A higher level phylogenetic classification of the fungi. Mycol Res 111:509–547. doi:10.1016/j.mycres.2007.03.004

    PubMed  Google Scholar 

  • Hornbostel VL, Ostfeld RS, Zhioua E, Benjamin MA (2004) Sublethal effects of Metarhizium anisopliae (Deuteromycetes) on engorged larval, nymphal, and adult Ixodes scapularis (Acari: Ixodidae). J Med Entomol 41:922–929

    PubMed  Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents—progress, problems and potential. CAB International, Wallingford

    Google Scholar 

  • Jenkinson DM (1992) The basis of the skin ecosystem. In: Noble WC (ed) The skin microflora and microbial disease. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jenkins NE, Grzywacz D (2000) Quality control of fungal and viral biocontrol agents—assurance of product performance. Biocontrol Sci Technol 10:753–777. doi:10.1080/09583150020011717

    Google Scholar 

  • Jenkinson DM, Lloyd DH (1979) The topography of the skin surface of cattle and sheep. Br Vet J 135:376–379

    PubMed  CAS  Google Scholar 

  • Jenkinson DM, Mabon RM (1973) The effect of temperature and humidity on the skin surface pH and the ionic composition of skin secretions in Ayrshire cattle. Br Vet J 129:282–295

    PubMed  CAS  Google Scholar 

  • Jenkinson DM, Mabon RM (1975) The corticosterol content of cattle skin washing. Res Vet Sci 19:94–95

    PubMed  CAS  Google Scholar 

  • Jenkinson DM, Lloyd DH, Mabon RM (1979) The antigenic composition and source of soluble proteins on the surface of the skin of sheep. J Comp Pathol 89:43–50. doi:10.1016/0021-9975(79)90007-0

    PubMed  CAS  Google Scholar 

  • Jenkinson DM, Mabon RM, Mason W (1974a) Sweat proteins. Br J Dermatol 90:175–181. doi:10.1111/j.1365-2133.1974.tb06382.x

    PubMed  CAS  Google Scholar 

  • Jenkinson DM, Mabon RM, Mason W (1974b) The effect of temperature and humidity on the losses of nitrogenous substances from the skin of Ayrshire cattle. Res Vet Sci 17:75–80

    PubMed  CAS  Google Scholar 

  • Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14. doi:10.1017/S0031182004005967

    PubMed  Google Scholar 

  • Jonsson NN (1997) Control of cattle ticks (Boophilus microplus) on Queensland dairy farms. Aust Vet J 75:802–807. doi:10.1111/j.1751-0813.1997.tb15657.x

    PubMed  CAS  Google Scholar 

  • Jonsson NN, Mayer DG, Matschoss AL, Green PE, Ansell J (1998) Production effects of cattle tick (Boophilus microplus) infestation of high yielding dairy cows. Vet Parasitol 78:65–77. doi:10.1016/S0304-4017(98)00118-6

    PubMed  CAS  Google Scholar 

  • Kaaya GP, Hassan S (2000) Entomogenous fungi as promising biopesticides for tick control. Exp Appl Acarol 24:913–926. doi:10.1023/A:1010722914299

    Google Scholar 

  • Kaaya GP, Mwangi EN, Ouna EA (1996) Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus and Amblyomma variegatum, using the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae. J Invertebr Pathol 67:15–20. doi:10.1006/jipa.1996.0003

    PubMed  CAS  Google Scholar 

  • Kalsbeek V, Frandsen F, Steenberg T (1995) Entomopathogenic fungi associated with Ixodes ricinus ticks. Exp Appl Acarol 19:45–51. doi:10.1007/BF00051936

    PubMed  CAS  Google Scholar 

  • Kedra E, Bogus MI (2006) The influence of Conidiobolus coronatus on phagocytic activity of insect hemocytes. J Invertebr Pathol 91:50–52. doi:10.1016/j.jip.2005.06.013

    PubMed  CAS  Google Scholar 

  • Kettle DS (1995) Ixodida—Ixodidae (hard ticks). In: Kettle DS (ed) Medical and veterinary entomology, 2nd edn. CAB International, Wallingford, UK

    Google Scholar 

  • Kirkland BH, Cho E, Keyhani NO (2004) Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari: Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biol Control 31:414–421. doi:10.1016/j.biocontrol.2004.07.007

    Google Scholar 

  • Klompen JSH, WC Black IV, Keirans JE, Homsher PJ (1996) Evolution of ticks. Annu Rev Entomol 41:141–161. doi:10.1146/annurev.en.41.010196.001041

    PubMed  CAS  Google Scholar 

  • Kooyman C, Bateman RP, Langewald J, Lomer CJ, Ouambama Z, Thomas MB (1997) Operational-scale application of entomopathogenic fungi for the control of Sahelian grasshoppers. Proc R Soc Lond B Biol Sci 264:541–546. doi:10.1098/rspb.1997.0077

    Google Scholar 

  • Langewalde J, Ouambama Z, Mamadou A, Mamadou A, Peveling R, Stol I et al (1999) Comparison of an organophosphate insecticide with a mycoinsecticide for the control of Oedaleus senegalensis (Orthoptera:Acrididae) and other Sahelian grasshoppers at an operational scale. Biocontrol Sci Technol 9:199–214. doi:10.1080/09583159929785

    Google Scholar 

  • Latif A (2003) Ticks and tickborne diseases in livestock in southern Africa. Newsletter on Integrated Control of Pathogenic Trypanosomes and their Vectors, vol 7, pp 19–20

  • Latif A, Jongejan F (2002) The wide use of acaricides for the control of livestock diseases in Africa needs a reappraisal. Newsletter on Integrated Control of Pathogenic Trypanosomes and their Vectors, vol 6, pp 10–12

  • Leemon DM, Jonsson NN (2008) Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. J Invertebr Pathol 97:40–49. doi:10.1016/j.jip.2007.07.006

    PubMed  CAS  Google Scholar 

  • Li DP, Holdom DG (1995) Effects of nutrients on colony formation, growth, and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). J Invertebr Pathol 65:253–260. doi:10.1006/jipa.1995.1039

    CAS  Google Scholar 

  • Lloyd DH, Mabon RM, Jenkinson DM (1977) The antigenic constituents of cattle skin washing. J Comp Pathol 87:75–82. doi:10.1016/0021-9975(77)90081-0

    PubMed  CAS  Google Scholar 

  • Lloyd DH, Dick WDB, Jenkinson DM (1979a) Structure of the epidermis in Ayshire bullocks. Res Vet Sci 26:172–179

    PubMed  CAS  Google Scholar 

  • Lloyd DH, Dick WDB, Jenkinson DM (1979b) Location of the microflora in the skin of cattle. Br Vet J 135:519–526

    PubMed  CAS  Google Scholar 

  • Lombardini G (1953) Biological and anatomical observations on Rhipicephalus sanguineus (Acarina: Ixodidae). Rev Appl Entomol Ser B 41:8

    Google Scholar 

  • Loosová G, Jindrák L, Kopáček P (2001) Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodorus moubata (Acarina: Argasidae). Folia Parasitol (Praha) 48:149–153

    Google Scholar 

  • Lui ZY, Milner RJ, McRae CF, Lutton GC (1993) The use of dodine in selective medium for the isolation of Metarhizium spp. from soil. J Invertebr Pathol 62:248–251. doi:10.1006/jipa.1993.1107

    Google Scholar 

  • Mabon RM, Jenkinson DM (1971) The excretion of 3-methoxy-4-hydroxy mandelic acid (VMA) by cattle skin. Res Vet Sci 12:289–292

    PubMed  CAS  Google Scholar 

  • Marcandier S, Khachatourians GG (1987) Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae), to Beauveria bassiana (Bals.) Vuillemin (Hyphomycete): influence of relative humidity. Can Entomol 119:901–907

    Article  Google Scholar 

  • McBride ME (1993) Physical factors affecting the skin flora and skin disease. In: Noble WC (ed) The skin microflora and microbial disease. Cambridge University Press, Cambridge, UK, pp 73–101

    Google Scholar 

  • McMaster JD, Jenkinson DM, Noble RC, Elder HY (1985) The lipid composition of bovine sebum and dermis. Br Vet J 141:34–41

    PubMed  CAS  Google Scholar 

  • Mitra SK, Sikdar A, Das P (1998) Dermatophytes isolated from selected ruminants in India. Mycopathologia 142:13–16. doi:10.1023/A:1006944605066

    PubMed  CAS  Google Scholar 

  • Monteiro SG, Bittencourt VREP, Daemon E, Faccini JLH (1998a) Pathogenicity under laboratory conditions of the fungi Beauveria bassiana and Metarhizium anisopliae on larvae of the tick Rhipicephalus sanguineus (Acari: Ixodidae). Rev Bras Parasitol Vet 7:113–116

    Google Scholar 

  • Monteiro SG, Carneiro ME, Bittencourt VREP, Daemon E (1998b) Effect of isolate 986 of the fungi Beauveria bassiana (Bals) Vuill on engorged females of Anocentor nitens Neumann, 1897 (Acari: Ixodidae). Arq Bras Med Vet Zootec 50:673–676

    Google Scholar 

  • Monteiro SG, Matimoto LR, da Silveira FS, Leal AM (2004) Isolation of fungi in Ixodids ticks naturally infected. Rev Fac Zootec Vet Agro Uruguaiana 10:65–71

    Google Scholar 

  • Monty DE, Garbareno MS (1978) Behavioural and physiologic responses of Holstein-Friesian cows to high environmental temperatures and artificial cooling in Arizona. Am J Vet Res 39:877–882

    PubMed  Google Scholar 

  • Moore D, Morley-Davies J (1994) The effects of temperature and ultra-violet irradiation on conidia of Metarhizium flavoviride. In: Proceedings of the Brighton crop protection conference—pest and diseases, pp 1085–1090

  • Moore D, Higgins PM, Lomer CJ (1996) Effects of simulated and natural light on the germination of conidia of Metarhizium flavoviride Gams and Rozsypal and interactions with temperature. Biocontrol Sci Technol 6:63–76. doi:10.1080/09583159650039539

    Google Scholar 

  • Moore D, Langewald J, Obognon F (1997) Effects of rehydration on the conidial viability of Metarhizium flavoviride mycopesticide formulations. Biocontrol Sci Technol 7:87–94. doi:10.1080/09583159731072

    Google Scholar 

  • Morley-Davies J, Moore D, Prior C (1996) Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycol Res 100:31–38

    Google Scholar 

  • Nari A (1995) Strategies for the control of one-host ticks and relationship with tick-borne diseases in South America. Vet Parasitol 57:153–165. doi:10.1016/0304-4017(94)03117-F

    PubMed  CAS  Google Scholar 

  • Olwoch JM, Rautenbach CJ, Erasmus BFN, Engelbrecht FA, Jaarsveld AS (2003) Simulating tick distributions over sub-Saharan Africa: the use of observed and simulated climate surfaces. J Biogeogr 30:1221–1232. doi:10.1046/j.1365-2699.2003.00913.x

    Google Scholar 

  • Onions AHS (1966) Scopulariopsis brevicaulis CMI descriptions of pathogenic fungi and bacteria, vol 100. Commonwealth Agricultural Bureaux, Wallingford

    Google Scholar 

  • Onofre SB, Miniuk CM, Barros NM, Azevedo JL (2001) Pathogenicity of four strains of entomopathogenic fungi against the bovine tick Boophilus microplus. J Vet Med 62:1478–1480

    CAS  Google Scholar 

  • Pegram RG, Oosterwijk GP (1990) The effect of Amblyomma variegatum on liveweight gain of cattle in Zambia. Med Vet Entomol 4:327–330. doi:10.1111/j.1365-2915.1990.tb00448.x

    PubMed  CAS  Google Scholar 

  • Polar P (2007) Studies on the use of entomopathogenic fungi for the control of cattle ticks. Ph.D. thesis, The University of the West Indies, Trinidad

  • Polar P, Kairo MTK, Peterkin D, Moore D, Pegram R, John S (2005a) Assessment of fungal isolates for the development of a myco-acaricide for cattle tick control. Vector Borne Zoonotic Dis 5:276–284. doi:10.1089/vbz.2005.5.276

    PubMed  Google Scholar 

  • Polar P, Aquino de Muro M, Kairo MTK, Moore D, Pegram R, John S et al (2005b) Thermal characteristics of Metarhizium anisopliae isolates important for the development of biological pesticides for the control of cattle ticks. Vet Parasitol 134:159–167. doi:10.1016/j.vetpar.2005.07.010

    PubMed  Google Scholar 

  • Polar P, Kairo MTK, Moore D et al (2005c) Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathology 160:151–157. doi:10.1007/s11046-005-0120-4

    CAS  Google Scholar 

  • Prior C, Carey M, Abraham YJ, Moore D, Bateman RP (1995) Development of a bioassay method for the selection of entomopathogenic fungi virulent to the desert locust, Schistocerca gregaria (Forskål). J Appl Entomol 119:567–573

    Google Scholar 

  • Prior C, Jollands P, Le Patourel G (1988) Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). J Invertebr Pathol 52:66–72. doi:10.1016/0022-2011(88)90103-6

    Google Scholar 

  • Revankar SG, Sutton DA, Sanche SE, Rao J, Zervos M, Dashti F et al (1999) Metarrhizium [sic] anisopliae as a cause of sinusitis in immunocompetent host. J Clin Microbiol 37:195–198

    PubMed  CAS  Google Scholar 

  • Rijo-Camacho E (1996) Lucha biological contra la garrapata Boophilus microplus (Canestrini, 1887) con hongos entomopatogenos. Ph.D. thesis, Instituto de Investigaciones de Sanidad Vegetal, Cuidad de la Havana, Cuba

  • Rogers GD (1989) Control of the molds Aspergillius sydowi and Penicillium citrinum in laboratory colonies of the Lone-Star tick, Amblyomma americanum (Acari: Ixodidae). Exp Appl Acarol 6:257–261. doi:10.1007/BF01193985

    CAS  Google Scholar 

  • Rourke BC, Gibbs AG (1999) Effects of lipid phase transitions on cuticular permeability: model membrane and in situ structures. J Exp Biol 202:3255–3262

    PubMed  Google Scholar 

  • Samish M, Rehacek J (1999) Pathogens and predators of ticks and their potential in biological control. Annu Rev Entomol 44:159–182. doi:10.1146/annurev.ento.44.1.159

    PubMed  CAS  Google Scholar 

  • Samish M, Gindin G, Alekseev E, Glazer I (2001) Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus (Acari: Ixodidae). J Parasitol 87:1355–1339

    PubMed  CAS  Google Scholar 

  • Samsinakova A, Kalalova S, Daniel M, Dusbabek F, Honzakova E, Cerny V (1974) Entomogenous fungi associated with the tick Ixodes ricinus. Folia Parasitol (Praha) 21:38–48

    Google Scholar 

  • Singh SP, Newton WM (1978) Acclimation of young calves to high temperatures: composition of blood and skin secretions. Am J Vet Res 39:799–801

    PubMed  CAS  Google Scholar 

  • Smith JMB (1989) Opportunistic mycoses of man and other animals. CAB International, Wallingford, UK

    Google Scholar 

  • Smith ME, Ahmed SU (1976) The lipid composition of sebaceous glands: a comparison with skin surface lipid. Res Vet Sci 21:250–252

    PubMed  CAS  Google Scholar 

  • Smith ME, Jenkinson DM (1975a) The mode of secretion of the sebaceous glands of cattle. Br Vet J 131:610–617

    PubMed  CAS  Google Scholar 

  • Smith ME, Jenkinson DM (1975b) The effect of age, sex and season on sebum output of Ayrshire calves. J Agric Sci 84:57–60

    Article  Google Scholar 

  • Souza EJ, Reis RCS, Bittencourt VREP (1999) Evaluation of in vitro effect of the fungi Beauveria bassiana and Metarhizium anisopliae on eggs and larvae of Amblyomma cajennense. Rev Bras Parasitol Vet 8:127–131

    Google Scholar 

  • Steelman CD, Brown MA, Gbur EE, Tolley G (1997) The effects of hair density of beef cattle on Haematobia irritans horn fly populations. Med Vet Entomol 11:257–264. doi:10.1111/j.1365-2915.1997.tb00404.x

    PubMed  CAS  Google Scholar 

  • St. Leger R, Nelson JO, Screen S (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145:2691–2691

    PubMed  CAS  Google Scholar 

  • St. Leger R, Screen S (2001) Prospects for strain improvement of fungal pathogens of insects and weeds. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents—progress, problems and potential. CAB International, Wallingford, UK, pp 219–238

    Google Scholar 

  • Thomas MB (1999) Ecological approaches and the development of “truly integrated” pest management. Proc Natl Acad Sci U S A 96:5944–5951. doi:10.1073/pnas.96.11.5944

    PubMed  CAS  Google Scholar 

  • Thomas MB, Wood SN, Langewald J, Lomer CJ (1997) Persistence of Metarhizium flavoviride and consequences for biological control of grasshoppers and locust. Pestic Sci 49:47–55. doi:10.1002/(SICI)1096-9063(199701)49:1<47::AID-PS471>3.0.CO;2-O

    CAS  Google Scholar 

  • Thomas MB, Wood SN, Solorzano V (1999) Application of insect-pathogen models to biological control. In: Hawkins BA, Cornell HV (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, UK, pp 368–384

    Google Scholar 

  • Valle ACF, Wanke B, Lazera MS, Monteiro PCF, Viegas ML (2001) Entomophthoramycosis by Conidiobolus coronatus. Report of a case successfully treated with the combination of itraconazole and fluconazole. Rev Inst Med Trop Sao Paulo 43:233–236

    PubMed  CAS  Google Scholar 

  • Van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24:497–560. doi:10.1023/A:1026518418163

    PubMed  Google Scholar 

  • Weitkamp AW (1945) The acidic constituents of degras—a new method of structural elucidation. J Am Chem Soc 67:447–454. doi:10.1021/ja01219a027

    CAS  Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents—progress, problems and potential. CAB International, Wallingford, UK, pp 9–22

    Google Scholar 

  • Wikel SK (1996) The immunology of host-ectoparasitic arthropod relationships. CAB International, Wallingford, UK

    Google Scholar 

  • Wille JJ, Kydonieus A (2003) Palmitoleic acid isomer (C16:1∆6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol Appl Skin Physiol 16:176–187. doi:10.1159/000069757

    PubMed  CAS  Google Scholar 

  • Wolff MS, Monty DE (1974) Physiological response to intense summer heat and its effect on the estrous cycle of non-lactating and lactating Holstein-Friesian cows in Arizona. Am J Vet Res 35:187–192

    PubMed  CAS  Google Scholar 

  • Yoder JA, Hanson PE, Zettler LW, Benoit JB, Ghisays F, Piskin KA (2003) Internal and external mycoflora of the American dog tick, Dermacentor variablis (Acari: Ixodidae), and its ecological implications. Appl Environ Microbiol 69:4994–4996. doi:10.1128/AEM.69.8.4994-4996.2003

    PubMed  CAS  Google Scholar 

  • Zhioua E, Browning M, Johnson PW, Ginsberg HS, LeBrun RA (1997) Pathogenicity of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycete) to Ixodes scapularis (Acari: Ixodidae). J Parasitol 83:815–818. doi:10.2307/3284273

    PubMed  CAS  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 176:553–555. doi:10.1080/09583150701309006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perry Polar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polar, P., Moore, D., Kairo, M.T.K. et al. Topically applied myco-acaricides for the control of cattle ticks: overcoming the challenges. Exp Appl Acarol 46, 119–148 (2008). https://doi.org/10.1007/s10493-008-9170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9170-x

Keywords

Navigation