Skip to main content
Log in

Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The goal of this study was to evaluate spider mite control efficacy of two dry-adapted strains of Neoseiulus californicus. Performance of these strains were compared to a commercial strain of Phytoseiulus persimilis on whole cucumber, pepper and strawberry plants infested with Tetranychus urticae at 50 ± 5% RH. Under these dry conditions predators’ performance was very different on each host plant. On cucumber, spider mite suppression was not attained by any of the three predators, plants ‘burnt out’ within 4 weeks of spider mite infestation. On strawberry, all predators satisfactorily suppressed spider mites yet they differed in short term efficacy and persistence. Phytoseiulus persimilis suppressed the spider mites more rapidly than did the BOKU and SI N. californicus strains. Both N. californicus strains persisted longer than did P. persimilis. The BOKU strain was superior to SI in population density reached, efficacy in spider mite suppression and persistence. On pepper, in the first 2 weeks of the experiment the BOKU strain was similar to P. persimilis and more efficacious in spider mite suppression than strain SI. Four weeks into the experiment the efficacy of P. persimilis dropped dramatically and was inferior to the SI and BOKU strains. Overall, mean predator density was highest on plants harbouring the BOKU strain, lowest on plants with P. persimilis and intermediate on plants with the SI strain. Implications for biocontrol of spider mites using phytoseiid species under dry conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Argov Y, Berkeley M, Domeratzky S, Melamed E, Weintraub P, Palevsky E (2006) Identification of pollens for small scale mass rearing of Neoseiulus californicus and a novel method for quality control. IOBC WPRS Bull 29(4):127–132

    Google Scholar 

  • Badii MH, McMurtry JA (1984) Life history of and life table parameters for Phytoseiulus longipes with comparative studies on P. persimilis and Typhlodromus occidentalis (Acari: Phytoseiidae). Acarologia 25:111–123

    Google Scholar 

  • Bakker FM, Klein ME, Mesa NC, Braun AR (1993) Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava. Exp Appl Acarol 17:97–113

    Google Scholar 

  • Blümel S, Walzer A (2002) Efficacy of different release strategies of Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias Henriot (Acari: Phytoseiidae) for the control of two-spotted spider mite (Tetranychus urticae Koch) on greenhouse cut roses. Sys Appl Acarol 7:35–48

    Google Scholar 

  • Boulard T, Fatnassi H, Roy JC, Lagier J, Fargues J, Smits N et al (2004) Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer. Agric For Meteorol 125:225–239. doi:10.1016/j.agrformet.2004.04.005

    Article  Google Scholar 

  • Castagnoli M, Falchini L (1993) Suitability of Polyphagotarsonemus latus (Banks) (Acari, Tarsonemidae) as prey for Amblyseius californicus (McGregor) (Acari, Phytoseiidae). Redia (Firenze) 76:273–279

    Google Scholar 

  • Castagnoli M, Simoni S (1991) Influence of temperature on population increase of Amblyseius californicus (McGregor) (Acari: Phytoseiidae). Redia (Firenze) 74:621–640

    Google Scholar 

  • Castagnoli M, Simoni S (1999) Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 23:217–234. doi:10.1023/A:1006066930638

    Article  Google Scholar 

  • Castagnoli M, Simoni S (2003) Neoseiulus californicus (McGregor) (Acari, Phytoseiidae): survey of biological and behavioural traits of a versatile predator. Redia (Firenze) 86:1–12

    Google Scholar 

  • Castagnoli M, Liguori M, Simoni S (2004) Tetranychus urticae Koch and its predator Neoseiulus californicus (McGregor) on different Solanaceae (Acari, Tetranychidae and Phytoseiidae). Redia (Firenze) 87:13–18

    Google Scholar 

  • Croft BA, Messing RH, Dunley JE, Strong WB (1993) Effects of humidity on eggs and immatures of Neoseiulus fallacis, Amblyseius andersoni, Metaseiulus occidentalis and Typhlodromus pyri (Phytoseiidae): implications for biological control on apple, caneberry, strawberry and hop. Exp Appl Acarol 17:451–459. doi:10.1007/BF00120503

    Article  Google Scholar 

  • De Courcy-Williams ME, Kravar-Garde L, Fenlon JS, Sunderl KD (2004) Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 32:1–13

    Article  PubMed  Google Scholar 

  • Dinh NV, Sabelis MW, Janssen A (1988) Influence of humidity and water availability on the survival of Amblyseius idaeus and A. anonymus (Acarina: Phytoseiidae). Exp Appl Acarol 4:27–40. doi:10.1007/BF01213839

    Article  Google Scholar 

  • El-Laithy AYM (1992) Some aspects on the use of the predaceous mite Phytoseiulus persimilis Athias-Henriot for biological control of the two-spotted spider mite Tetranychus urticae Koch in greenhouses in Egypt. J Plant Dis Prot 9:93–100

    Google Scholar 

  • Enkegaard A, Brodsgaard HF (1994) Biological control of spider mites and thrips on pot Gerbera. SP Rapport No. 7, 307–319

  • Faraji F, Janssen A, Sabelis MW (2002) Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecol Entomol 27:660–664. doi:10.1046/j.1365-2311.2002.00456.x

    Article  Google Scholar 

  • Ferreira JAM, Eshuis B, Janssen A, Sabelis M (2008) Domatia reduce larval cannibalism in predatory mites. Ecol Entomol Online 8-Feb

  • Gotoh T, Tsuchiya A, Kitashima Y (2006) Influence of prey on developmental performance, reproduction and prey consumption of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 40:189–204. doi:10.1007/s10493-006-9032-3

    Article  PubMed  Google Scholar 

  • Gerson U, Aronowitz A (1981) Spider mite webbing V. The effect of various host plants. Acarologia 22:277–281

    Google Scholar 

  • Gerson U, Weintraub P (2007) Mites for control of pests in protected cultivation. Pest Manag Sci 63:658–676. doi:10.1002/ps.1380

    Article  PubMed  CAS  Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell Science, Oxford, UK

    Google Scholar 

  • Grostal P, O’Dowd DJ (1994) Plants, mites and mutualism—leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97:308–315

    Google Scholar 

  • Hazan A, Gerson U, Tahori AS (1973) Life history and life tables of the carmine spider mite. Acarologia 15:414–440

    Google Scholar 

  • Helle W, Sabelis MW (eds) (1985) Spider mites, their biology, natural enemies and control. Elsevier, Amsterdam

  • Kasap I (2002) Biology and life tables of the two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) on three different host plants in laboratory conditions. Turk Entomol Derg 26:257–266

    Google Scholar 

  • Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:119–131. doi:10.1023/A:1006098410165

    Article  Google Scholar 

  • Krips OE, Witul A, Willems PEL, Dicke M (1998) Intrinsic rate of population increase of the spider mite Tetranychus urticae on the ornamental crop gerbera: intraspecific variation in host plant and herbivore. Entomol Exp Appl 89:159–168. doi:10.1023/A:1003516213213

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321. doi:10.1146/annurev.ento.42.1.291

    Article  PubMed  CAS  Google Scholar 

  • Monetti LN, Croft BA (1997) Neoseiulus californicus (McGregor) and Neoseiulus fallacis (Garman): larval responses to prey and humidity, nymphal feeding drive and nymphal predation on phytoseiid eggs. Exp Appl Acarol 21:225–234. doi:10.1023/A:1018442820736

    Article  Google Scholar 

  • Norton AP, English Loeb G, Belden E (2001) Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators. Oecologia 126:535–542. doi:10.1007/s004420000556

    Article  Google Scholar 

  • Palevsky E, Weintraub P, Zchori-Fein E, Argov Y, Castagnoli M, Liguori M et al (2006) Development of an economic rearing and transport system for an arid-adapted strain of the predatory mite, Neoseiulus californicus, for spider mite control. In: Bruin J (ed) 12th International Congress of Acarology. University of Amsterdam, Amsterdam, NL, pp 154–155

    Google Scholar 

  • Peusens G, Bylemans D (2002) Linking reproduction and predation parameters, which determine the success of predators of Tetranychus urticae (Koch), with climatological data of different strawberry culture systems. Acta Hortic 567:667–670

    Google Scholar 

  • Pringle KL, Heunis JM (2006) Biological control of phytophagous mites in apple orchards in the Elgin area of South Africa using the predatory mite, Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae): a benefit-cost analysis. Afr Entomol 14:113–121

    Google Scholar 

  • Rhodes EM, Liburd OE, Kelts C, Rondon SI, Francis RR (2006) Comparison of single and combination treatments of Phytoseiulus persimilis, Neoseiulus californicus, and Acramite (bifenazate) for control of twospotted spider mites in strawberries. Exp Appl Acarol 39:213–225. doi:10.1007/s10493-006-9005-6

    Article  PubMed  CAS  Google Scholar 

  • Roda A, Nyrop J, Dicke M, English Loeb G (2000) Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia 125:428–435. doi:10.1007/s004420000462

    Article  Google Scholar 

  • Rott AS, Ponsonby DJ (2001) Control of two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) on edible crops in glasshouses using two interacting species of predatory mite. In Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Proceedings of the 10th International Congress of Acarology, CSIRO Publishing, Collingwood, Australia, pp 387–391

  • Sabelis MW (1981) Biological control of two-spotted spider mites using phytoseiid predators Part I. Modelling the predator–prey interaction at the individual level. Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands

    Google Scholar 

  • Schausberger P (1998) The influence of relative humidity on egg hatch in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae). J Appl Entomol 122:497–500

    Article  Google Scholar 

  • Schausberger P, Walzer A (2001) Combined versus single species release of predaceous mites: predator–predator interactions and pest suppression. Biol Control 20:269–278. doi:10.1006/bcon.2000.0908

    Article  Google Scholar 

  • Sengonca C, Zegula T, Blaeser P (2004) The suitability of twelve different predatory mite species for the biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Z Pflanzenkr Pflanzenschutz 111:388–399

    Google Scholar 

  • Simoni S, Walzer A, Castagnoli M, Liguori M, Palevsky E, Schausberger P (2006) Strain ranking of Neoseiulus californicus on the basis of demographic parameters at low humidities. In: Bruin J (ed) 12th International Congress of Acarology. University of Amsterdam, Amsterdam, The Netherlands, p 191

    Google Scholar 

  • Skirvin DJ, De Courcy-Williams ME, Fenlon JS, Sunderland KD (2002) Modelling the effects of plant species on biocontrol effectiveness in ornamental nursery crops. J Appl Ecol 39:469–480. doi:10.1046/j.1365-2664.2002.00728.x

    Article  Google Scholar 

  • Stenseth C (1979) Effect of temperature and humidity on the development of Phytoseiulus persimilis and its ability to regulate populations of Tetranychus urticae (Acarina: Phytoseiidae, Tetranychidae). Entomophaga 24:311–317. doi:10.1007/BF02374246

    Article  Google Scholar 

  • Swirski E, Amitai S, Dorzia N (1970) Laboratory studies on the feeding habits, post-embryonic survival and oviposition of the predacious mites Amblyseius chilenensis Dosse and Amblyseius hibisci Chant [Acarina: Phytoseiidae] on various kinds of food substances. Entomophaga 15:93–106. doi:10.1007/BF02371627

    Article  Google Scholar 

  • Toyoshima S, Hinomoto N (2004) Intraspecific variation of reproductive characteristics of Amblyseius californicus (McGregor) (Acari: Phytoseiidae). Appl Entomol Zool (Jpn) 39:351–355. doi:10.1303/aez.2004.351

    Article  Google Scholar 

  • van den Boom CEM, van Beek TA, Dicke M (2003) Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch. J Appl Entomol 127:177–183. doi:10.1046/j.1439-0418.2003.00726.x

    Article  Google Scholar 

  • Walzer A, Castagnoli M, Simoni S, Liguori M, Palevsky E, Schausberger P (2007) Intraspecific variation in humidity susceptibility of the predatory mite Neoseiulus californicus: survival, development and reproduction. Biol Control 41:42–52. doi:10.1016/j.biocontrol.2006.11.012

    Article  Google Scholar 

  • Walzer A, Paulus HF, Schausberger P (2006) Oviposition behavior of interacting predatory mites: response to the presence of con- and heterospecific eggs. J Insect Behav 19:305–320. doi:10.1007/s10905-006-9025-4

    Article  Google Scholar 

  • Weintraub P, Palevsky E (2008) Evaluation of an arid adapted strain of the predatory mites, Neoseiulus californicus, for spider mite control on greenhouse sweet pepper. Exp Appl Acarol (this issue). doi:10.1007/s10493-008-9169-3

  • Weintraub PG, Kleitman S, Shapira N, Argov Y, Palevsky E (2006) Efficacy of Phytoseiulus persimilis versus Neoseiulus californicus for controlling spider mites on greenhouse sweet pepper. IOBC WPRS Bull 29(4):121–125

    Google Scholar 

Download references

Acknowledgments

This study was part of a multi-institutional project funded by the European Community, within the sixth framework, Horizontal Research Activities involving SME’s, Co-operative Research (CRAFT), Project number and acronym: 508090, EUROMITE. Thanks to all participants of EUROMITE for fruitful collaboration. The authors are grateful to Prof. Salvatore Ragusa from the University of Palermo for providing the Sicily Neoseiulus californicus strain, to Martin Berkeley and Aisheh Sadia from ARO and Monika Enigl from BOKU for their technical assistance and to Dr. Hillary Voet for her assistance in the statistical analyses. Thanks to Phyllis Weintraub for the critical reading of this manuscript. This paper is a contribution from the Agricultural Research Organization, Institute of Plant Protection, Bet Dagan, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Palevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palevsky, E., Walzer, A., Gal, S. et al. Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper. Exp Appl Acarol 45, 15–27 (2008). https://doi.org/10.1007/s10493-008-9162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9162-x

Keywords

Navigation