Skip to main content

Advertisement

Log in

Non-omnia moriantur—toxicity of mancozeb on dead wood microarthropod fauna

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The effect of Dithane M-45 (dithiocarbamate fungicide; active substance: mancozeb) was studied on microarthropod fauna inhabiting dead wood. Although the exposure was almost never 100% lethal for the majority of observed taxa, almost all (Mesostigmata, Oribatida, some Uropodina, Actinedida, Collembola and Diplopoda) showed very high correlation between concentration of the fungicide and mortality (r > 0.86). Only Stigmaeidae showed low correlation (r = 0.293). For the majority of taxa LC50 values were close to the concentrations used during agrochemical activities in woods. Only Trachytes aegrota showed full susceptibility to the fungicide within the range of recommended field concentrations used in forestry (characterised by the low LC95 value). Tolerance of mesostigmatid and oribatid mites was found to differ between juveniles and adults, but not consistently. Related Uropodina species varied in susceptibility to the fungicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamski Z, Niewadzi M, Ziemnicki K (2005) Inheritance of chorionic malformations and insecticide resistance by Spodoptera exigua. J Appl Entomol 129:526–533

    Article  CAS  Google Scholar 

  • Adamski Z, Ziemnicki K (2004) Side effects of mancozeb on Spodoptera exigua (Hübn.) larvae. J Appl Entomol 128:212–217

    Article  CAS  Google Scholar 

  • Armitage P, Berry G (1971) Statistical methods in medical research, 3rd Edn. Blackwell, Oxford, England, pp 504

    Google Scholar 

  • Bloszyk J (1999) Geograficzne i ekologiczne zróżnicowanie zgrupowań roztoczy z kohorty Uropodina (Acari: Mesostigmata) w Polsce. I. Uropodina lasów grądowych (Carpinion betuli). (Geographical and ecological variability of mites of the kohort Uropodina (Aciari: Mesostigmata) in Poland. I. Uropodine mites of oak-hornbeam forest (Carpinion betuli). In Polish Kontekst, Poznan, pp 245

  • Blümel S, Pertl C, Bakker FM (2000) Comparative trials on the effects of two fungicides on a predatory mite in the laboratory and in the field. Ent Exp Appl 97:321–330

    Article  Google Scholar 

  • Chakravorty PP, Bose S, Joy VC, Bhattacharya S (1995) Biomonitoring of anticholinesterase pesticides in the soil: usefulness of soil Collembola. Biomed Environ Sci 8:232–239

    PubMed  CAS  Google Scholar 

  • Childers CC, Villanueva R, Aguilar H, Chewning R, Michaud JP (2001) Comparative residual toxicities of pesticides to the predator Agistemus industani (Acari: Stigmaeidae) on citrus in Florida. Exp Appl Acarol. 25: 461–474

    Article  PubMed  CAS  Google Scholar 

  • Debnath D, Mandal TK (2000) Study of quainalphos (an environmental oestrogenic insecticide) formulation (Ekalux 25 E. C.)—induced damage of the testicular tissues and antioxidant defence system in Sprague–Dawley albino rats. Appl Toxicol 20:197–204

    Article  CAS  Google Scholar 

  • DowAgro (2006) Mancozeb, Active Ingredient in Dithane ®, Rore® fungicides Archves Reregistration status. http://www.dowagro.com/newsroom/corporatenews/2006/20060105a.htm?filepath=&fromPage=Basi cSearch. Cited 19 Feb 2007

  • Easton A, Guven K, de Pomerai DI (2001) Toxicity of the dithiocarbamate fungicide mancozeb to the nontarget soil nematode, Caenorhabditis elegans. J Biochem Mol Toxicol 15:15–25

    Article  PubMed  CAS  Google Scholar 

  • Extoxnet (2006) Extension Toxicology Network Pesticide Information Profiles. http://extoxnet.orst.edu/pips/mancozeb.htm. Cited 16 November 2006

  • Finney DJ (1971) Probit analysis, 3rd rev edn. Cambridge University Press, London/New York, pp 350

    Google Scholar 

  • Hagley EAC, Biggs AR (1989) Effects of three fungicides on populations of a phytohpagous and several predacious mites (Acarina) on apple. Exp Appl Acarol 6:253–256

    Article  CAS  Google Scholar 

  • Illig J, Langer R, Norton RA, Scheu S, Maraun M (2005) Where are the decomposers? Uncovering the soil food web of a tropical montane rain forest in southern Ecuador using stable isotopes (15N). J Trop Ecol 21:589–593

    Article  Google Scholar 

  • Joy VC, Chakravorty PP (1991) Impact of insecticides on nontarget microarthropod fauna in agricultural soil. Exotoxicol Environ Saf 22:8–16

    Article  CAS  Google Scholar 

  • Joy VC, Pramanik R, Sakar K (2005) Biomonitoring insecticide pollution using non-target soil microarthropods. J Environ Biol 26:571–577

    PubMed  CAS  Google Scholar 

  • Kongchuensin M, Takafuji A (2006) Effects of some pesticides on the predatory mite, Neoseiulus longispinosus (Evans) (Gamasina: Phytoseiidae). J Acarol Soc Jpn 15:17–27

    Article  Google Scholar 

  • Luxton M 1972. Studies on the oribatid mites of a Danish beech wood Soil. Pedobiologia, 12:434–463

    Google Scholar 

  • Mehlhorn H, Mencke N, Hansen O (1999) Effects of imidacloprid on adult and larval stages of the flea Ctenocephalides felis after in vivo and in vitro application: a light- and electron-microscopy study. Parasitol Res 85:625–637

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn H, Hansen O, Mencke N 2001. Comparative study on the effects of three insecticides (fipronil, imidacloprid, selamectin) on developmental stages of the cat flea (Ctenocephalides felis Bouche 1835): a light and electron microscopic analysis of in vivo and in vitro experiments. Parasitol Res 87:198–207

    Article  PubMed  CAS  Google Scholar 

  • Moretti M, Marcarelli M, Villarini M, Fatigoni C, Scassellati-Sforzolini G, Pasquini R (2002) In vitro testing for genotoxicity of the herbicide terbutryn: cytogenetic and primary DNA damage. Toxic In Vitro 16:81–88

    Article  CAS  Google Scholar 

  • Nelson EE, Croft BA, Howitt AJ, Jones AL (1973) Toxicity of apple orchard pesticides to Agistemus fleschneri. Environ Entomol 2:219–222

    CAS  Google Scholar 

  • Vermeulen LA, Reinecke AJ, Reinecke SA (2001) Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (mancozeb) for sublethal and acute toxicity to Eisenia fetida (Oligochaeta). Exotoxicol Environ Saf 48:183–189

    Article  CAS  Google Scholar 

  • Vig K, Shigh DK, Sharma PK (2006) Endosulfan and quinalphos residues and toxicity to soil microarthropods after repeated applications in a field investigation. J Environ Sci Health B 41:681–692

    PubMed  Google Scholar 

Download references

Acknowledgements

The study was partially supported by Komitet Badan Naukowych project Nos. KBN 2 P04G 122 28. The authors are very grateful to prof. Helen Ghiradella, Dept Biological Sciences, SUNY at Albany (USA), for her valuable remarks, helpful suggestions, critical reading and linguistic correction of the manuscript. We also thank the two anonymous reviewers, for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Adamski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamski, Z., Bloszyk, J., Bruin, J. et al. Non-omnia moriantur—toxicity of mancozeb on dead wood microarthropod fauna. Exp Appl Acarol 42, 47–53 (2007). https://doi.org/10.1007/s10493-007-9069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-007-9069-y

Keywords

Navigation