Experimental & Applied Acarology

, Volume 37, Issue 1–2, pp 107–116 | Cite as

Detection of ‘Candidatus Cardinium’ Bacteria from the Haploid Host Brevipalpus Californicus (Acari: Tenuipalpidae) and Effect on the Host

  • Atsushi ChigiraEmail author
  • Kazuki Miura


Brevipalpus californicus (Banks) was infected with ‘Candidatus Cardinium’ bacteria (Cardinium). Tetracycline-treated females produced many male progeny even though untreated females produced only female progeny. B. californicus appears to be feminized by Cardinium. The values for net reproduction rate (R0), generation time (T) and intrinsic rate of natural increase (r m ) calculated for B. californicus were 7.48/day, 31.45 days and 0.064/day, respectively. The comparison of infected females with uninfected males and other closely related species, indicated that Cardinium does not have a negative effect on the fitness of B. californicus.


Brevipalpus Candidatus Cardinium Feminization Genetic male Haploid female Thelytokous parthenogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandi, C., Dunn, A.M., Hurst, G.D.D., Rigaud, T. 2001Inherited microorganisms, sex-specific virulence and reproductive parasitismTrends Parasitol.178894PubMedGoogle Scholar
  2. Birch, L.C. 1948The intrinsic rate of natural increase of an insect populationJ. Anim. Ecol.171526Google Scholar
  3. Buchanan, G.A., Bengston, M., Exley, E.M. 1980Population growth of Brevipalpus lewisi McGregor (Acarinia: Tenuipalpidae) on grapevinesAust. J. Agric. Res.31957965CrossRefGoogle Scholar
  4. Childers, C.C., French, J.V., Rodrigues, J.C.V. 2003aBrevipalpus californicus, B. obovatus, B. phoenicis, B. lewisi (Acari: Tenuipalpidae): a review of their biology, feeding injury and economic importanceExp. Appl. Acarol.30528CrossRefGoogle Scholar
  5. Childers, C.C., Rodrigues, J.C.V., Welbourn, W.C. 2003bHost Plants of Brevipalpus californicus, B. obovatus, B. phoenicis (Acari: Tenuipalpidae) and their potential involvement in the spread of viral diseases vectored by these mitesExp. Appl. Acarol.3029105CrossRefGoogle Scholar
  6. Helle, W., Bolland, H.R., Gutierrez, J. 1972Minimal chromosome number in false spider mites (Tenuipalpidae)Experientia28707708CrossRefGoogle Scholar
  7. Huigens, M.E., Luck, R.F., Klaassen, R.H.G., Maas, M.F.P.M., Timmermans, M.J.T.N., Stouthamer, R. 2000Infectious parthenogenesisNature405178179CrossRefPubMedGoogle Scholar
  8. Kennedy, J.S. 1996Demecology of the false spider mite Brevipalpus phoenicis (Geijskes) (Acari, Tenuipalpidae)J. Appl. Entomol.120493499Google Scholar
  9. Kondo, H., Maeda, T., Tamada, T. 2003Orchid Fleck Virus: Brevipalpus californicus mite transmission, biological properties and genome structureExp. Appl. Acarol.30215223CrossRefPubMedGoogle Scholar
  10. Lamb, R.Y., Willey, R.B. 1979Are parthenogenetic and related bisexual insects equal in fertility?Evolution33774775Google Scholar
  11. Oomen P.A. 1982. Studies on Population Dynamics of the Scarlet Mite Brevipalpus phoenicis a Pest of Tea in Indonesia. Mededelingen Landbouwhogeschool Wageningen, Nederland, 88 pp.Google Scholar
  12. Perrot, V. 2002Haploid all the way: a new style of asexuality revealed in animalsBioEssays24114118CrossRefPubMedGoogle Scholar
  13. Pijnacker, L.P., Ferwerda, M.A., Helle, W. 1981Cytological investigations on the female and male reproductive system of the parthenogenetic privet mite, Brevipalpus obovatus (Donnadieu) (PhytoptipalpidaeAcari)Acarologia22157163Google Scholar
  14. Pontier, K.J.B., deMoraes, G.J., Kreiter, S. 2000Biology of Tenuipalpus heveae (Acari, Tenuipalpidae) on rubber tree leavesAcarologia41423427Google Scholar
  15. Sabelis, M.W. 1991Life-history evolution of spider mitesSchuster, R.Murphy, P.W. eds. The AcariChapman & HallLondon2349Google Scholar
  16. Schilthuizen, M., Stouthamer, R. 2000Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma waspsProc. Roy. Soc. Lond. Ser. B Biol. Sci.264361366Google Scholar
  17. Stouthamer, R., Hurst, G.D.D., Breeuwer, J.A.J. 2002Sex ratio distorters and their detectionHardy, I.C.W. eds. Sex RatiosCambridge University PressCambridge195215Google Scholar
  18. Stouthamer, R. 1997Wolbachia-induced parthenogenesisO’Neill, S.L.Hoffmann, A.A.Werren, J.H. eds. Influential Passengers; Inferited Microorganisms and Arthropod ReproductionOxford University PressOxford102122Google Scholar
  19. Tagami, Y., Miura, K., Stouthamer, R. 2001How does infection with parthenogenesis-inducing Wolbachia reduce the fitness of Trichogramma?J. Invert. Pathol.78267271CrossRefGoogle Scholar
  20. Weeks, A.R., Breeuwer, J.A.J. 2003A new bacterium from the Cytophaga–Flavobacterium–Bacteroides Phylum that causes sex-ratio distortionBourtzis, K.Miller, T.A. eds. Insect SymbiosisCRC PressLondon165176Google Scholar
  21. Weeks, A.R., Marec, F., Breeuwer, J.A.J. 2001A mite species that consists entirely of haploid femalesScience29224792482PubMedGoogle Scholar
  22. Weeks, A.R., Stouthamer, R. 2004Increased fecundity associated with infection by a Cytophaga-like intracellular bacterium in the predatory mite, Metaseiulus occidentalisProc. Roy. Soc. Lond. Ser. B Biol. Sci.271193195Google Scholar
  23. Weisburg, W.G., Dobson, M.E., Samuel, J.E., Dasch, G.A., Mallavia, L.P., Baca, O.,  et al. 1989Phylogenetic diversity of the RickettsiaeJ. Bacteriol.17142024206PubMedGoogle Scholar
  24. Wrensch, D.L. 1993Evolutionary flexibility though haploid males or how chance favors the prepared genomeWrenshe, D.L.Ebbert, M.A. eds. Evolution and Diversity of Sex Ratio in Insects and MitesChapman and HallNew York118149Google Scholar
  25. Zchori-Fein, E., Gottlieb, Y., Kelly, S.E., Brown, J.K., Wilson, J.M., Karr, T.L., Hunter, M.S. 2001A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid waspsProc. Natl. Acad. Sci. USA981255512560CrossRefPubMedGoogle Scholar
  26. Zchori-Fein, E., Perlman, S.J., Kelly, S.E., Katzir, N., Hunter, M.S. 2004Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of ‘CandidatusCardinium hertigii’Int. J. Syst. Evol. Microbiol.54961968PubMedGoogle Scholar
  27. Zou, W., Rousset, F., O’Neill, S. 1998Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequencesProc. Roy Soc. Lond. Ser. B Biol. Sci.265509515CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Graduate school of Biosphere SciencesHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.National Agricultural Research Center for Western Region of Insect Pest ControlFukuyamaJapan

Personalised recommendations