Skip to main content
Log in

Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by vonMises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Caboussat, R. Glowinski: Numerical solution of a variational problem arising in stress analysis: the vector case. Discrete Contin. Dyn. Syst. 27 (2010), 1447–1472.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Cermak, J. Haslinger, T. Kozubek, S. Sysala: Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: Part II—numerical realization, limit analysis. ZAMM, Z. Angew. Math. Mech. 95 (2015), 1348–1371.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. F. Chen, X. L. Liu: Limit Analysis in Soil Mechanics. Elsevier, 1990.

    Google Scholar 

  4. E. Christiansen: Limit analysis of collapse states. Handbook of Numerical Analysis, Volume IV: Finite Element Methods (part 2), Numerical Methods for Solids (part 2) (P. G. Ciarlet, eds.). North-Holland, Amsterdam, 1996, pp. 193–312.

    Book  Google Scholar 

  5. E. A. de Souza Neto, D. Perić, D. R. J. Owen: Computational Methods for Plasticity: Theory and Applications. Wiley, 2008.

    Book  Google Scholar 

  6. U. Dierkes, S. Hildebrandt, F. Sauvigny: Minimal Surfaces. Grundlehren der Mathematischen Wissenschaften 339, Springer, Dordrecht, 2010.

    MATH  Google Scholar 

  7. G. Duvaut, J. L. Lions: Inequalities in Mechanics and Physics. Grundlehren der Mathematischen Wissenschaften 219, Springer, Berlin, 1976.

    Google Scholar 

  8. I. Ekeland, R. Temam: Convex Analysis and Variational Problems. Études Mathématiques, Dunod; Gauthier-Villars, Paris, 1974. (In French.)

    MATH  Google Scholar 

  9. R. Finn: Equilibrium Capillary Surfaces. Grundlehren der Mathematischen Wissenschaften 284, Springer, New York, 1986.

    Google Scholar 

  10. S. Fučík, A. Kufner: Nonlinear Differential Equations. Studies in Applied Mechanics 2, Elsevier Scientific Publishing Company, Amsterdam, 1980.

    MATH  Google Scholar 

  11. E. Giusti: Minimal Surfaces and Functions of Bounded Variations. Monographs in Mathematics 80, Birkhäuser, Basel, 1984.

    Google Scholar 

  12. P. Hansbo: A discontinuous finite element method for elasto-plasticity. Int. J. Numer. Methods Biomed. Eng. 26 (2010), 780–789.

    MathSciNet  MATH  Google Scholar 

  13. J. Haslinger, S. Repin, S. Sysala: A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting. J. Comput. Appl. Math. 303 (2016), 156–170.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Johnson, R. Scott: A finite element method for problems in perfect plasticity using discontinuous trial functions. Nonlinear Finite Element Analysis in StructuralMechanics (W. Wunderlich, et al., eds.). Proc. Europe-U. S. Workshop, Bochum, 1980, Springer, Berlin, 1981, pp. 307–324.

    Chapter  Google Scholar 

  15. M. A. Krasnosel’skii: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford, 1964.

    Google Scholar 

  16. D. W. Langbein: Capillary Surfaces: Shape, Stability, Dynamics, in Particular under Weightlessness. Springer Tracts in Modern Physics 178, Springer, Berlin, 2002.

    Google Scholar 

  17. F. Liu, J. Zhao: Limit analysis of slope stability by rigid finite-element method and linear programming considering rotational failure. Int. J. Geomech. 13 (2013), 827–839.

    Article  Google Scholar 

  18. J. C. C. Nitsche: Lectures on Minimal Surfaces: Volume 1: Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Revised, extended and updated by the author. Cambridge University Press, Cambridge, 2011.

    Google Scholar 

  19. E. Ramm: Strategies for tracing nonlinear response near limit points. Nonlinear Finite Element Analysis in Structural Mechanics (W. Wunderlich, eds.). Proc. Europe-U. S. Workshop, Bochum, 1980, Springer, Berlin, 1981, pp. 63–89.

    Chapter  Google Scholar 

  20. S. Repin, G. Seregin: Existence of a weak solution of the minimax problem arising in Coulomb-Mohr plasticity. Nonlinear Evolution Equations (N. N. Uraltseva, ed.). Am. Math. Soc. Ser. 2, 164, American Mathematical Society, Providence, 1995, pp. 189–220.

    Chapter  Google Scholar 

  21. R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, 1970.

    Book  MATH  Google Scholar 

  22. S. W. Sloan: Lower bound limit analysis using finite elements and linear programming. Int. J. Numer. Anal. Methods Geomech. 12 (1988), 61–77.

    Article  MATH  Google Scholar 

  23. P.-M. Suquet: Existence et régularité des solutions des équations de la plasticité parfaite. C. R. Acad. Sci., Paris, Sér. A 286 (1978), 1201–1204. (In French.)

    MathSciNet  MATH  Google Scholar 

  24. S. Sysala: Properties and simplifications of constitutive time-discretized elastoplastic operators. ZAMM, Z. Angew. Math. Mech. 94 (2014), 233–255.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Sysala, M. Cermak, T. Koudelka, J. Kruis, J. Zeman, R. Blaheta: Subdifferentialbased implicit return-mapping operators in computational plasticity. ZAMM, Z. Angew. Math. Mech. 96 (2016), 1–21, DOI 10.1002/zamm.201500305.

    Article  Google Scholar 

  26. S. Sysala, J. Haslinger, I. Hlaváček, M. Cermak: Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: PART I–discretization, limit analysis. ZAMM, Z. Angew. Math. Mech. 95 (2015), 333–353.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Temam: Mathematical Problems in Plasticity. Gauthier-Villars, Montrouge, 1983.

    MATH  Google Scholar 

  28. X. Yu, F. Tin-Loi: A simple mixed finite element for static limit analysis. Comput. Struct. 84 (2006), 1906–1917.

    Article  Google Scholar 

  29. O. C. Zienkiewicz, R. L. Taylor: The Finite Element Method. Vol. 2. Solid Mechanics. Butterworth-Heinemann, Oxford, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Haslinger.

Additional information

This work was supported by The Ministry of Education, Youth and Sports of the Czech Republic from the National Programme of Sustainability (NPU II), project “IT4Innovations excellence in science-LQ1602”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haslinger, J., Repin, S. & Sysala, S. Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals. Appl Math 61, 527–564 (2016). https://doi.org/10.1007/s10492-016-0146-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-016-0146-6

Keywords

MSC 2010

Navigation