Skip to main content
Log in

Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in ℝN

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we study the existence of nonnegative and nontrivial solutions for the quasilinear Schrödinger equation

$$- {\Delta _N}u + b{\left| u \right|^{N - 2}}u - {\Delta _N}\left( {{u^2}} \right)u = h\left( u \right)$$

, x ∈ RN where Δ N is the N-Laplacian operator, h(u) is continuous and behaves as exp(α|u|N/(N-1)) when |u| → ∞. Using the Nehari manifold method and the Schwarz symmetrization with some special techniques, the existence of a nonnegative and nontrivial solution u(x) ∈ W 1,N(RN) with u(x) → 0 as |x| → ∞ is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adachi, K. Tanaka: Trudinger type inequalities in RN and their best exponents. Proc. Am. Math. Soc. 128 (2000), 2051–2057.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Badiale, E. Serra: Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach. Universitext, Springer, London, 2011.

    Book  MATH  Google Scholar 

  3. H. Berestycki, P.-L. Lions: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82 (1983), 313–345.

    MathSciNet  MATH  Google Scholar 

  4. H. Brézis, E. Lieb: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88 (1983), 486–490.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Cazenave: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, 2003.

    MATH  Google Scholar 

  6. M. Colin, L. Jeanjean: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 56 (2004), 213–226.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. de Bouard, N. Hayashi, J.-C. Saut: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189 (1997), 73–105.

    Article  MATH  Google Scholar 

  8. D.G. de Figueiredo, O. H. Miyagaki, B. Ruf: Elliptic equations in R2 with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3 (1995), 139–153.

    Article  MATH  Google Scholar 

  9. J.M. B. do Ó: Semilinear Dirichlet problems for the N-Laplacian in RN with nonlinearities in the critical growth range. Differ. Integral Equ. 9 (1996), 967–979.

    MATH  Google Scholar 

  10. J.M. B. do Ó: N-Laplacian equations in RN with critical growth. Abstr. Appl. Anal. 2 (1997), 301–315.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.M. B. do Ó, E. Medeiros, U. Severo: On a quasilinear nonhomogeneous elliptic equation with critical growth in RN. J. Differ. Equations 246 (2009), 1363–1386.

    Article  MATH  Google Scholar 

  12. J.M. B. do Ó, O. H. Miyagaki, S. H. M. Soares: Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67 (2007), 3357–3372.

    Article  MATH  Google Scholar 

  13. J.M. B. do Ó, U. Severo: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. Partial Differ. Equ. 38 (2010), 275–315.

    Article  MATH  Google Scholar 

  14. D. E. Edmunds, A. A. Ilyin: Asymptotically sharp multiplicative inequalities. Bull. London Math. Soc. 27 (1995), 71–74.

    Article  MathSciNet  MATH  Google Scholar 

  15. X.-D. Fang, A. Szulkin: Multiple solutions for a quasilinear Schrödinger equation. J. Differ. Equations 254 (2013), 2015–2032.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics, Springer, Berlin, 2001.

    MATH  Google Scholar 

  17. R.W. Hasse: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys., B 37 (1980), 83–87.

    Article  MathSciNet  Google Scholar 

  18. S. Kurihara: Exact soliton solution for superfluid film dynamics. J. Phys. Soc. Japan 50 (1981), 3801–3805.

    Article  MathSciNet  Google Scholar 

  19. E.W. Laedke, K. H. Spatschek, L. Stenflo: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24 (1983), 2764–2769.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. H. Lieb, M. Loss: Analysis. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, 2001.

    Google Scholar 

  21. P.-L. Lions: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 223–283.

    MathSciNet  MATH  Google Scholar 

  22. J.-Q. Liu, Y.-Q. Wang, Z.-Q. Wang: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equations 187 (2003), 473–493.

    Article  MATH  Google Scholar 

  23. J.-Q. Liu, Y.-Q. Wang, Z.-Q. Wang: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equations 29 (2004), 879–901.

    Article  MATH  Google Scholar 

  24. V.G. Makhankov, V. K. Fedyanin: Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phys. Rep. 104 (1984), 1–86.

    Article  MathSciNet  Google Scholar 

  25. G.R.W. Quispel, H.W. Capel: Equation of motion for the Heisenberg spin chain. Physica A 110 (1982), 41–80.

    Article  MathSciNet  Google Scholar 

  26. D. Ruiz, G. Siciliano: Existence of ground states for a modified nonlinear Schrödinger equation. Nonlinearity 23 (2010), 1221–1233.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Serrin: Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247–302.

    Article  MathSciNet  MATH  Google Scholar 

  28. U. Severo: Existence of weak solutions for quasilinear elliptic equations involving the p-Laplacian. Electron. J. Differ. Equ. (electronic only) 2008 (2008), 16 pages.

    Google Scholar 

  29. Y. Wang, J. Yang, Y. Zhang: Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in RN. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 6157–6169.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caisheng Chen.

Additional information

The research has been supported by the Fundamental Research Funds for the Central Universities of China (2015B31014) and NSFC-11571092.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Song, H. Soliton solutions for quasilinear Schrödinger equation with critical exponential growth in ℝN . Appl Math 61, 317–337 (2016). https://doi.org/10.1007/s10492-016-0134-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-016-0134-x

Keywords

MSC 2010

Navigation