Abstract
We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken H 1-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches.
Similar content being viewed by others
References
D. Ait-Ali-Yahia, G. Baruzzi, W. G. Habashi, M. Fortin, J. Dompierre, M.-G. Vallet: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solverindependent CFD. II. Structured grids. Int. J. Numer. Methods Fluids 39 (2002), 657–673.
R. Aubry, R. Löhner: Generation of viscous grids at ridges and corners. Int. J. Numer. Methods Eng. 77 (2009), 1247–1289.
I. Babuška, M. Suri: The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994), 578–632.
W. Cao: Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements. SIAM J. Sci. Comput. 29 (2007), 756–781.
W. Cao: An interpolation error estimate in R 2 based on the anisotropic measures of higher order derivatives. Math. Comput. 77 (2008), 265–286.
C. Clavero, J. L. Gracia, J. C. Jorge: A uniformly convergence alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems. IMA J. Numer. Anal. 26 (2006), 155–172.
C. Dawson, S. Sun, M. F. Wheeler: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004), 2565–2580.
L. Demkowicz, W. Rachowicz, P. Devloo: A fully automatic hp-adaptivity. J. Sci. Comput. 17 (2002), 117–142.
V. Dolejší: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165–178.
V. Dolejší: ANGENER-software package. Charles University Prague, Faculty of Mathematics and Physics, 2000. www.karlin.mff.cuni.cz/~dolejsi/angen/angen.htm.
V. Dolejší: Analysis and application of the IIPG method to quasilinear nonstationary convection-diffusion problems. J. Comput. Appl. Math. 222 (2008), 251–273.
V. Dolejší: hp-DGFEM for nonlinear convection-diffusion problems. Math. Comput. Simul. 87 (2013), 87–118.
V. Dolejší: Anisotropic hp-adaptive method based on interpolation error estimates in the Lq-norm. Appl. Numer. Math. 82 (2014), 80–114.
V. Dolejší, J. Felcman: Anisotropic mesh adaptation for numerical solution of boundary value problems. Numer. Methods Partial Differ. Equations 20 (2004), 576–608.
V. Dolejší, H.-G. Roos: BDF-FEM for parabolic singularly perturbed problems with exponential layers on layers-adapted meshes in space. Neural Parallel Sci. Comput. 18 (2010), 221–235.
P. J. Frey, F. Alauzet: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194 (2005), 5068–5082.
V. John, P. Knobloch: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review. Comput. Methods Appl. Mech. Eng. 196 (2007), 2197–2215.
T. Knopp, G. Lube, G. Rapin: Stabilized finite element methods with shock capturing for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 191 (2002), 2997–3013.
P. Laug, H. Borouchaki: BL2D-V2: isotropic or anisotropic 2D mesher. INRIA, 2002. https://www.rocq.inria.fr/gamma/Patrick.Laug/logiciels/bl2d-v2/INDEX.html.
A. Loseille, F. Alauzet: Continuous mesh framework part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49 (2011), 38–60.
A. Loseille, F. Alauzet: Continuous mesh framework part II: validations and applications. SIAM J. Numer. Anal. 49 (2011), 61–86.
J.-M. Mirebeau: Optimal meshes for finite elements of arbitrary order. Constr. Approx. 32 (2010), 339–383.
J.-M. Mirebeau: Optimally adapted meshes for finite elements of arbitrary order and W1,p norms. Numer. Math. 120 (2012), 271–305.
C. Schwab: p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, 1998.
P. Šolín: Partial Differential Equations and the Finite Element Method. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, John Wiley & Sons, Hoboken, 2006.
P. Šolín, L. Demkowicz: Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Eng. 193 (2004), 449–468.
S. Sun: Discontinuous Galerkin methods for reactive transport in porous media. Ph. D. thesis, The University of Texas, Austin, 2003.
T. Vejchodský, P. Šolín, M. Zítka: Modular hp-FEM system HERMES and its application to Maxwell’s equations. Math. Comput. Simul. 76 (2007), 223–228.
O. C. Zienkiewicz, J. Wu: Automatic directional refinement in adaptive analysis of compressible flows. Int. J. Numer. Methods Eng. 37 (1994), 2189–2210.
Author information
Authors and Affiliations
Corresponding author
Additional information
Cordially dedicated to prof. Ivo Babuška, the founder of hp-methods
The research of V.Dolejši has been supported by Grant No. 13-00522S of the Czech Science Foundation. The author acknowledges also the membership in the Nečas Center for Mathematical Modeling ncmm@karlin.mff.cuni.cz.
Rights and permissions
About this article
Cite this article
Dolejší, V. Anisotropic hp-adaptive method based on interpolation error estimates in the H 1-seminorm. Appl Math 60, 597–616 (2015). https://doi.org/10.1007/s10492-015-0113-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10492-015-0113-7