Skip to main content
Log in

Anisotropic hp-adaptive method based on interpolation error estimates in the H 1-seminorm

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken H 1-seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed anisotropic adaptive strategy in comparison with other adaptive approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ait-Ali-Yahia, G. Baruzzi, W. G. Habashi, M. Fortin, J. Dompierre, M.-G. Vallet: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solverindependent CFD. II. Structured grids. Int. J. Numer. Methods Fluids 39 (2002), 657–673.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Aubry, R. Löhner: Generation of viscous grids at ridges and corners. Int. J. Numer. Methods Eng. 77 (2009), 1247–1289.

    Article  MATH  Google Scholar 

  3. I. Babuška, M. Suri: The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994), 578–632.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Cao: Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements. SIAM J. Sci. Comput. 29 (2007), 756–781.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Cao: An interpolation error estimate in R 2 based on the anisotropic measures of higher order derivatives. Math. Comput. 77 (2008), 265–286.

    Article  MATH  Google Scholar 

  6. C. Clavero, J. L. Gracia, J. C. Jorge: A uniformly convergence alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems. IMA J. Numer. Anal. 26 (2006), 155–172.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Dawson, S. Sun, M. F. Wheeler: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004), 2565–2580.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Demkowicz, W. Rachowicz, P. Devloo: A fully automatic hp-adaptivity. J. Sci. Comput. 17 (2002), 117–142.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Dolejší: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165–178.

    Article  MATH  Google Scholar 

  10. V. Dolejší: ANGENER-software package. Charles University Prague, Faculty of Mathematics and Physics, 2000. www.karlin.mff.cuni.cz/~dolejsi/angen/angen.htm.

  11. V. Dolejší: Analysis and application of the IIPG method to quasilinear nonstationary convection-diffusion problems. J. Comput. Appl. Math. 222 (2008), 251–273.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Dolejší: hp-DGFEM for nonlinear convection-diffusion problems. Math. Comput. Simul. 87 (2013), 87–118.

    Article  Google Scholar 

  13. V. Dolejší: Anisotropic hp-adaptive method based on interpolation error estimates in the Lq-norm. Appl. Numer. Math. 82 (2014), 80–114.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Dolejší, J. Felcman: Anisotropic mesh adaptation for numerical solution of boundary value problems. Numer. Methods Partial Differ. Equations 20 (2004), 576–608.

    Article  MATH  Google Scholar 

  15. V. Dolejší, H.-G. Roos: BDF-FEM for parabolic singularly perturbed problems with exponential layers on layers-adapted meshes in space. Neural Parallel Sci. Comput. 18 (2010), 221–235.

    MathSciNet  MATH  Google Scholar 

  16. P. J. Frey, F. Alauzet: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194 (2005), 5068–5082.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. John, P. Knobloch: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I. A review. Comput. Methods Appl. Mech. Eng. 196 (2007), 2197–2215.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Knopp, G. Lube, G. Rapin: Stabilized finite element methods with shock capturing for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 191 (2002), 2997–3013.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Laug, H. Borouchaki: BL2D-V2: isotropic or anisotropic 2D mesher. INRIA, 2002. https://www.rocq.inria.fr/gamma/Patrick.Laug/logiciels/bl2d-v2/INDEX.html.

  20. A. Loseille, F. Alauzet: Continuous mesh framework part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49 (2011), 38–60.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Loseille, F. Alauzet: Continuous mesh framework part II: validations and applications. SIAM J. Numer. Anal. 49 (2011), 61–86.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.-M. Mirebeau: Optimal meshes for finite elements of arbitrary order. Constr. Approx. 32 (2010), 339–383.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.-M. Mirebeau: Optimally adapted meshes for finite elements of arbitrary order and W1,p norms. Numer. Math. 120 (2012), 271–305.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Schwab: p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, 1998.

    MATH  Google Scholar 

  25. P. Šolín: Partial Differential Equations and the Finite Element Method. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, John Wiley & Sons, Hoboken, 2006.

  26. P. Šolín, L. Demkowicz: Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Eng. 193 (2004), 449–468.

    Article  MATH  Google Scholar 

  27. S. Sun: Discontinuous Galerkin methods for reactive transport in porous media. Ph. D. thesis, The University of Texas, Austin, 2003.

    Google Scholar 

  28. T. Vejchodský, P. Šolín, M. Zítka: Modular hp-FEM system HERMES and its application to Maxwell’s equations. Math. Comput. Simul. 76 (2007), 223–228.

    Article  MATH  Google Scholar 

  29. O. C. Zienkiewicz, J. Wu: Automatic directional refinement in adaptive analysis of compressible flows. Int. J. Numer. Methods Eng. 37 (1994), 2189–2210.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Dolejší.

Additional information

Cordially dedicated to prof. Ivo Babuška, the founder of hp-methods

The research of V.Dolejši has been supported by Grant No. 13-00522S of the Czech Science Foundation. The author acknowledges also the membership in the Nečas Center for Mathematical Modeling ncmm@karlin.mff.cuni.cz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolejší, V. Anisotropic hp-adaptive method based on interpolation error estimates in the H 1-seminorm. Appl Math 60, 597–616 (2015). https://doi.org/10.1007/s10492-015-0113-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-015-0113-7

Keywords

MSC 2010

Navigation