Skip to main content
Log in

Adaptive algorithm for stochastic Galerkin method

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a new tool for obtaining efficient a posteriori estimates of errors of approximate solutions of differential equations the data of which depend linearly on random parameters. The solution method is the stochastic Galerkin method. Polynomial chaos expansion of the solution is considered and the approximation spaces are tensor products of univariate polynomials in random variables and of finite element basis functions. We derive a uniform upper bound to the strengthened Cauchy-Bunyakowski-Schwarz constant for a certain hierarchical decomposition of these spaces. Based on this, an adaptive algorithm is proposed. A simple numerical example illustrates the efficiency of the algorithm. Only the uniform distribution of random variables is considered in this paper, but the results obtained can be modified to any other type of random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ainsworth, J. T. Oden: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley, Chichester, 2000.

    Book  Google Scholar 

  2. O. Axelsson: Iterative Solution Methods. Cambridge Univ. Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

  3. O. Axelsson, R. Blaheta, M. Neytcheva: Preconditioning of boundary value problems using elementwise Schur complements. SIAM J. Matrix Anal. Appl. 31 (2009), 767–789.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Babuška, F. Nobile, R. Tempone: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52 (2010), 317–355.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Babuška, R. Tempone, G. E. Zouraris: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004), 800–825.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. E. Bank, T. F. Dupont, H. Yserentant: The hierarchical basis multigrid method. Numer. Math. 52 (1988), 427–458.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Bespalov, C. E. Powell, D. Silvester: A priori error analysis of stochastic Galerkin mixed approximations of elliptic PDEs with random data. SIAM J. Numer. Anal. 50 (2012), 2039–2063.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Bosq: Linear Processes in Function Spaces. Theory and Applications. Lecture Notes in Statistics 149, Springer, New York, 2000.

    Book  MATH  Google Scholar 

  9. C. M. Bryant, S. Prudhomme, T. Wildey: A posteriori error control for partial differential equations with random data. ICES Report 13-08, 2013, https://www.ices.utexas.edu/media/reports/2013/1308.pdf.

  10. T. Butler, P. Constantine, T. Wildey: A posteriori error analysis of parameterized linear systems using spectral methods. SIAM J. Matrix Anal. Appl. 33 (2012), 195–209.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. K. Deb, I. M. Babuška, J. T. Oden: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190 (2001), 6359–6372.

    Article  MATH  Google Scholar 

  12. M. Eigel, C. J. Gittelson, C. Schwab, E. Zander: A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes. Preprint No. 1911. Weierstrass Institute für Angewadte Analysis und Stochastic, Berlin, 2013.

    Google Scholar 

  13. M. Eigel, C. J. Gittelson, C. Schwab, E. Zander: Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Eng. 270 (2014), 247–269.

    Article  MATH  MathSciNet  Google Scholar 

  14. O. G. Ernst, E. Ullmann: Stochastic Galerkin matrices. SIAM J. Matrix Anal. Appl. 31 (2010), 1848–1872.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Frauenfelder, C. Schwab, R. A. Todor: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005), 205–228.

    Article  MATH  MathSciNet  Google Scholar 

  16. O. P. Le Maître, O. M. Knio, H. N. Najm, R. G. Ghanem: Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197 (2004), 28–57.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. E. Powell, H. C. Elman: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29 (2009), 350–375.

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Pultarová: Hierarchical preconditioning for the stochastic Galerkin method: upper bounds to the strengthened CBS constants. Submitted. Available in ERC-CZ project LL1202 database, http://more.karlin.mff.cuni.cz.

  19. A. Ralston: A First Course in Numerical Analysis. McGraw-Hill Book, New York, 1965.

    MATH  Google Scholar 

  20. B. Sousedík, R. G. Ghanem: Truncated hierarchical preconditioning for the stochastic Galerkin FEM. Int. J. Uncertain. Quantif. 4 (2014), 333–348.

    Article  MathSciNet  Google Scholar 

  21. B. Sousedík, R. G. Ghanem, E. T. Phipps: Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algebra Appl. 21 (2014), 136–151.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Ullmann, H. C. Elman, O. G. Ernst: Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems. SIAM J. Sci. Comput. 34 (2012), A659–A682.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Xiu: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton University Press, Princeton, 2010.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Pultarová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pultarová, I. Adaptive algorithm for stochastic Galerkin method. Appl Math 60, 551–571 (2015). https://doi.org/10.1007/s10492-015-0111-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-015-0111-9

Keywords

MSC 2010

Navigation