Skip to main content
Log in

A priori error estimates for Lagrange interpolation on triangles

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We present the error analysis of Lagrange interpolation on triangles. A new a priori error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates. To derive the new error estimate, we make use of the two key observations. The first is that squeezing a right isosceles triangle perpendicularly does not reduce the approximation property of Lagrange interpolation. An arbitrary triangle is obtained from a squeezed right triangle by a linear transformation. The second key observation is that the ratio of the singular values of the linear transformation is bounded by the circumradius of the target triangle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, J. J. F. Fournier: Sobolev Spaces. Pure and Applied Mathematics 140, Academic Press, New York, 2003.

    MATH  Google Scholar 

  2. I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Brandts, S. Korotov, M. Křížek: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227–2233.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15, Springer, New York, 2008.

    MATH  Google Scholar 

  5. H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York, 2011.

    MATH  Google Scholar 

  6. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40, SIAM, Philadelphia, 2002, Repr., unabridged republ. of the orig. 1978.

    Book  Google Scholar 

  7. A. Ern, J.-L. Guermond: Theory and Practice of Finite Elements. AppliedMathematical Sciences 159, Springer, New York, 2004.

    MATH  Google Scholar 

  8. A. Hannukainen, S. Korotov, M. Křížek: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79–88.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. A. Horn, C. R. Johnson: Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  10. P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat., R 10 (1976), 43–60. (In French.)

    MATH  MathSciNet  Google Scholar 

  11. K. Kobayashi, T. Tsuchiya: A Babuška-Aziz type proof of the circumradius condition. Japan J. Ind. Appl. Math. 31 (2014), 193–210.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Kobayashi, T. Tsuchiya: On the circumradius condition for piecewise linear triangular elements. Japan J. Ind. Appl. Math. 32 (2015), 65–76.

    Article  MathSciNet  Google Scholar 

  13. K. Kobayashi, T. Tsuchiya: An extension of Babuška-Aziz’s theorem to higher order Lagrange interpolation. ArXiv:1508.00119 (2015).

  14. M. Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223–232.

    MATH  Google Scholar 

  15. X. Liu, F. Kikuchi: Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements. J. Math. Sci., Tokyo 17 (2010), 27–78.

    MATH  MathSciNet  Google Scholar 

  16. N. A. Shenk: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comput. 63 (1994), 105–119.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Yamamoto: Elements of Matrix Analysis. Saiensu-sha, 2010. (In Japanese.)

  18. A. Ženíšek: The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 (1969), 355–376. (In Czech.)

    MATH  MathSciNet  Google Scholar 

  19. M. Zlámal: On the finite element method. Numer. Math. 12 (1968), 394–409.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Kobayashi.

Additional information

The authors are supported by JSPS Grant-in-Aid for Scientific Research (C) 25400198 and (C) 26400201. The second author is partially supported by JSPS Grant-in-Aid for Scientific Research (B) 23340023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Tsuchiya, T. A priori error estimates for Lagrange interpolation on triangles. Appl Math 60, 485–499 (2015). https://doi.org/10.1007/s10492-015-0108-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-015-0108-4

Keywords

MSC 2010

Navigation