Skip to main content
Log in

On the Subspace Projected Approximate Matrix method

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We provide a comparative study of the Subspace Projected Approximate Matrix method, abbreviated SPAM, which is a fairly recent iterative method of computing a few eigenvalues of a Hermitian matrix A. It falls in the category of inner-outer iteration methods and aims to reduce the costs of matrix-vector products with A within its inner iteration. This is done by choosing an approximation A 0 of A, and then, based on both A and A 0, to define a sequence (A k ) n k=0 of matrices that increasingly better approximate A as the process progresses. Then the matrix A k is used in the kth inner iteration instead of A.

In spite of its main idea being refreshingly new and interesting, SPAM has not yet been studied in detail by the numerical linear algebra community. We would like to change this by explaining the method, and to show that for certain special choices for A 0, SPAM turns out to be mathematically equivalent to known eigenvalue methods. More sophisticated approximations A 0 turn SPAM into a boosted version of Lanczos, whereas it can also be interpreted as an attempt to enhance a certain instance of the preconditioned Jacobi-Davidson method.

Numerical experiments are performed that are specifically tailored to illustrate certain aspects of SPAM and its variations. For experiments that test the practical performance of SPAM in comparison with other methods, we refer to other sources. The main conclusion is that SPAM provides a natural transition between the Lanczos method and one-step preconditioned Jacobi-Davidson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Software-Environments-Tools. 11, SIAM, Philadelphia, 2000.

    Google Scholar 

  2. F. L. Bauer, C. T. Fike: Norms and exclusion theorems. Numer. Math. 2 (1960), 137–141.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Beattie: Harmonic Ritz and Lehmann bounds. ETNA, Electron. Trans. Numer. Anal. 7 (1998), 18–39.

    MATH  MathSciNet  Google Scholar 

  4. J. Brandts: The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action. Linear Algebra Appl. 358 (2003), 335–365.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Brandts, R. R. da Silva: A subspace-projected approximate matrix method for systems of linear equations. East Asian J. Appl. Math. 3 (2013), 120–137.

    MATH  MathSciNet  Google Scholar 

  6. W. Chen, B. Poirier: Parallel implementation of efficient preconditioned linear solver for grid-based applications in chemical physics. II: QMR linear solver. J. Comput. Phys. 219 (2006), 198–209.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. G. Ciarlet, J. L. Lions (eds. ): Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1). North-Holland, Amsterdam, 1991.

    MATH  Google Scholar 

  8. M. Crouzeix, B. Philippe, M. Sadkane: The Davidson method. SIAM J. Sci. Comput. 15 (1994), 62–76.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. R. Davidson: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17 (1975), 87–94.

    Article  MATH  Google Scholar 

  10. M. Genseberger, G. L. G. Sleijpen: Alternative correction equations in the Jacobi-Davidson method. Numer. Linear Algebra Appl. 6 (1999), 235–253.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. H. Golub, H. A. van der Vorst: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123 (2000), 35–65.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. H. Golub, C. F. van Loan: Matrix Computations. The Johns Hopkins Univ. Press, Baltimore, 1996.

    MATH  Google Scholar 

  13. W. Gyõrffy, P. Seidler, O. Christiansen: Solving the eigenvalue equations of correlated vibrational structure methods: preconditioning and targeting strategies. J. Chem. Phys. 131 (2009), 024108.

    Article  Google Scholar 

  14. Z. Jia, G. W. Stewart: An analysis of the Rayleigh-Ritz method for approximating eigenspaces. Math. Comput. 70 (2001), 637–647.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Lanczos: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards 45 (1950), 255–282.

    Article  MathSciNet  Google Scholar 

  16. D. M. Medvedev, S. K. Gray, A. F. Wagner, M. Minkoff, R. Shepard: Advanced software for the calculation of thermochemistry, kinetics, and dynamics. J. Phys.: Conf. Ser. 16 (2005), 247–251.

    Google Scholar 

  17. R. B. Morgan, D. S. Scott: Generalizations of Davidson’s method for computing eigen-values of sparse symmetric matrices. SIAM J. Sci. Stat. Comput. 7 (1986), 817–825.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. C. Paige, M. S. Saunders: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (1975), 617–629.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. N. Parlett: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics 20, SIAM, Philadelphia, 1998.

    Book  MATH  Google Scholar 

  20. F. Ribeiro, C. Lung, C. Leforestier: A Jacobi-Wilson description coupled to a block-Davidson algorithm: an efficient scheme to calculate highly excited vibrational levels. J. Chem. Phys. 123 (2005), 054106.

    Article  Google Scholar 

  21. R. Shepard, A. F. Wagner, J. L. Tilson, M. Minkoff: The subspace projected approximate matrix (SPAM) modification of the Davidson method. J. Comput. Phys. 172 (2001), 472–514.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. L. G. Sleijpen, J. van den Eshof: On the use of harmonic Ritz pairs in approximating internal eigenpairs. Linear Algebra Appl. 358 (2003), 115–137.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. L. G. Sleijpen, H. A. van der Vorst: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17 (1996), 401–425.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. L. G. Sleijpen, H. A. van der Vorst: The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton schemes. Iterative Method in Linear Algebra II (S. D. Margenov, P. S. Vassilevski, eds.). IMACS Ann. Comput. Appl. Math. 3, 1996, pp. 377–389.

  25. G. L. G. Sleijpen, H. A. van der Vorst: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42 (2000), 267–293.

    Article  MathSciNet  Google Scholar 

  26. D. C. Sorensen: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13 (1992), 357–385.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. W. Stewart: Matrix Algorithms. Vol. 2: Eigensystems. SIAM, Philadelphia, 2001.

    Book  MATH  Google Scholar 

  28. G. W. Stewart: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23 (2002), 601–614; addendum ibid. 24 (2002), 599–601.

    Article  Google Scholar 

  29. G. W. Stewart, J. G. Sun: Matrix Perturbation Theory. Academic Press, Boston, 1990.

    MATH  Google Scholar 

  30. L. C. Wrobel, M. H. Aliabadi: The Boundary Element Method. Vol. 1: Applications in Thermo-Fluids and Acoustics. Wiley, Chichester, 2002.

    Google Scholar 

  31. Y. Zhou, R. Shepard, M. Minkoff: Computing eigenvalue bounds for iterative subspace matrix methods. Comput. Phys. Commun. 167 (2005), 90–102.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan H. Brandts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandts, J.H., da Silva, R.R. On the Subspace Projected Approximate Matrix method. Appl Math 60, 421–452 (2015). https://doi.org/10.1007/s10492-015-0104-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-015-0104-8

Keywords

MSC 2010

Navigation