Skip to main content
Log in

Weaker convergence conditions for the secant method

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. K. Argyros: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298 (2004), 374–397.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. K. Argyros: Convergence and Applications of Newton-Type Iterations. Springer, New York, 2008.

    MATH  Google Scholar 

  3. I. K. Argyros: New sufficient convergence conditions for the secant method. Czech. Math. J. 55 (2005), 175–187.

    Article  MATH  Google Scholar 

  4. I. K. Argyros: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004), 315–332.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. K. Argyros, Y. J. Cho, S. Hilout: Numerical Methods for Equations and Its Applications. CRC Press, Boca Raton, 2012.

    MATH  Google Scholar 

  6. I. K. Argyros, S. Hilout: Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications. World Scientific, Hackensack, 2013.

    Book  MATH  Google Scholar 

  7. I. K. Argyros, S. Hilout: Convergence conditions for secant-type methods. Czech. Math. J. 60 (2010), 253–272.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. K. Argyros, S. Hilout: Semilocal convergence conditions for the Secant method using recurrent functions. Rev. Anal. Numér. Théor. Approx. 40 (2011), 107–119.

    MATH  MathSciNet  Google Scholar 

  9. I. K. Argyros, S. Hilout: Weaker conditions for the convergence of Newton’s method. J. Complexity 28 (2012), 364–387.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. E. Bosarge Jr., P. L. Falb: A multipoint method of third order. J. Optimization Theory Appl. 4 (1969), 155–166.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. E. Dennis Jr.: Toward a Unified Convergence Theory for Newton-Like Methods. Nonlinear Functional Analysis and Applications, Proc. Adv. Sem. Math. Res. Center, Univ. Wisconsin 1970 (L.B. Rall, ed.). Publication No. 26 of the Mathematics Research Center the University of Wisconsin, Academic Press, New York, 1971, pp. 425–472.

    Google Scholar 

  12. M. A. Hernández, M. J. Rubio, J.A. Ezquerro: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115 (2000), 245–254.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. A. Hernández, M. J. Rubio, J.A. Ezquerro: Solving a special case of conservative problems by secant-like methods. Appl. Math. Comput. 169 (2005), 926–942.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. V. Kantorovich, G. P. Akilov: Functional Analysis. Pergamon Press. Transl. from the Russian by Howard L. Silcock. 2nd ed, Oxford, 1982.

  15. P. Laasonen: Ein überquadratisch konvergenter iterativer Algorithmus. Ann. Acad. Sci. Fenn., Ser. A I 450 (1969), 10. (In German.)

    MathSciNet  Google Scholar 

  16. J. M. Ortega, W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics, Academic Press, New York, 1970.

    MATH  Google Scholar 

  17. F.-A. Potra: On the convergence of a class of Newton-like methods. iIterative Solution of Nonlinear Systems of Equations, Proc. Meeting, Oberwolfach 1982. Lecture Notes in Mathematics 953, Springer, Berlin, 1982, pp. 125–137.

    Google Scholar 

  18. F.-A. Potra: Sharp error bounds for a class of Newton-like methods. Libertas Math. 5 (1985), 71–84.

    MATH  MathSciNet  Google Scholar 

  19. F.-A. Potra, V. Pták: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics 103, Pitman Advanced Publishing Program, Boston, 1984.

    MATH  Google Scholar 

  20. F.-A. Potra, V. Pták: Sharp error bounds for Newton’s process. Numer. Math. 34 (1980), 63–72.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. D. Proinov: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complexity 26 (2010), 3–42.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. W. Schmidt: Untere Fehlerschranken für Regula-Falsi-Verfahren. Period. Math. Hung. 9 (1978), 241–247. (In German.)

    Article  MATH  Google Scholar 

  23. M. A. Wolfe: Extended iterative methods for the solution of operator equations. Numer. Math. 31 (1978), 153–174.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Yamamoto: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545–557.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Argyros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Hilout, S. Weaker convergence conditions for the secant method. Appl Math 59, 265–284 (2014). https://doi.org/10.1007/s10492-014-0054-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-014-0054-6

Keywords

MSC 2010

Navigation