Skip to main content

Complete convergence in mean for double arrays of random variables with values in Banach spaces

Abstract

The rate of moment convergence of sample sums was investigated by Chow (1988) (in case of real-valued random variables). In 2006, Rosalsky et al. introduced and investigated this concept for case random variable with Banach-valued (called complete convergence in mean of order p). In this paper, we give some new results of complete convergence in mean of order p and its applications to strong laws of large numbers for double arrays of random variables taking values in Banach spaces.

This is a preview of subscription content, access via your institution.

References

  1. A. Adler, A. Rosalsky: Some general strong laws for weighted sums of stochastically dominated random variables. Stochastic Anal. Appl. 5 (1987), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. S. Chow: On the rate of moment convergence of sample sums and extremes. Bull. Inst. Math., Acad. Sin. 16 (1988), 177–201.

    MATH  Google Scholar 

  3. L. V. Dung, T. Ngamkham, N. D. Tien, A. I. Volodin: Marcinkiewicz-Zygmund type law of large numbers for double arrays of random elements in Banach spaces. Lobachevskii J. Math. 30 (2009), 337–346.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Hoffmann-Jørgensen, G. Pisier: The law of large numbers and the central limit theorem in Banach spaces. Ann. Probab. 4 (1976), 587–599.

    Article  Google Scholar 

  5. G. Pisier: Martingales with values in uniformly convex spaces. Isr. J. Math. 20 (1975), 326–350.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Rosalsky, L. V. Thanh, A. I. Volodin: On complete convergence in mean of normed sums of independent random elements in Banach spaces. Stochastic Anal. Appl. 24 (2006), 23–35.

    Article  MATH  Google Scholar 

  7. F. S. Scalora: Abstract martingale convergence theorems. Pac. J. Math. 11 (1961), 347–374.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta Cong Son.

Additional information

The research of the first author (grant no. 101.03-2013.02), second author (grant no. 101.03-2013.02) and third author (grant no. 10103-2012.17) have been partially supported by Vietnams National Foundation for Science and Technology Development (NAFOSTED). The research of the first author has been partially supported by project TN-13-01.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Son, T.C., Thang, D.H. & Dung, L.V. Complete convergence in mean for double arrays of random variables with values in Banach spaces. Appl Math 59, 177–190 (2014). https://doi.org/10.1007/s10492-014-0048-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-014-0048-4

Keywords

  • complete convergence in mean
  • double array of random variables with values in Banach space
  • martingale difference double array
  • strong law of large numbers
  • p-uniformly smooth space

MSC 2010

  • 60B11
  • 60B12
  • 60F15
  • 60F25