Skip to main content
Log in

Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points of the time discretization.

We derive error estimates in discrete norms L (0, T;H 10 (Ω)) and W 1,∞(0, T;L 2(Ω)), and an error estimate for an approximation of the gradient, in a general framework in which the discrete bilinear form involved in the finite volume scheme satisfies some ellipticity condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bradji, J. Fuhrmann: Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids. C. R. Math. Acad. Sci. Paris 348 (2010), 1119–1122.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bradji, J. Fuhrmann: Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes. NMA 2010, LNCS 6046 (2011) (I. Domov, S. Dimova, N. Kolkovska, eds.). Springer, Berlin, 2011, pp. 269–276.

    Google Scholar 

  3. A. Bradji: Some simple error estimates for finite volume approximation of parabolic equations. C. R. Math. Acad. Sci. Paris 346 (2008), 571–574.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bradji, J. Fuhrmann: Some error estimates in finite volume method for parabolic equations. Finite Volumes for Complex Applications V. Proc. 5th Int. Symp. (R. Eymard, J.-M. Hérard, eds.). John Wiley & Sons, 2008, pp. 233–240.

  5. A. Bradji, R. Herbin: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28 (2008), 469–495.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Brézis: Analyse Fonctionnelle: Théorie et Applications. Mason, Paris, 1994. (In French.)

    MATH  Google Scholar 

  7. P. Chatzipantelidis, R.D. Lazarov, V. Thomée: Parabolic finite volume element equations in nonconvex polygonal domains. Numer. Methods Partial Differ. Equ. 25 (2009), 507–525.

    Article  MATH  Google Scholar 

  8. P. Chatzipantelidis, R.D. Lazarov, V. Thomée: Error estimates for a finite volume element method for parabolic equations on convex polygonal domain. Numer. Methods Partial Differ. Equ. 20 (2004), 650–674.

    Article  MATH  Google Scholar 

  9. P.G. Ciarlet: Basic error estimates for elliptic problems. Handbook of Numerical Analysis, Vol. II (P.G. Ciarlet, J.-L. Lions, eds.). North-Holland, Amsterdam, 1991, pp. 17–352.

    Google Scholar 

  10. V. Dolejší, M. Feistauer, V. Kučera, V. Sobotíková: An optimal L (L 2)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008), 496–521.

    Article  MathSciNet  MATH  Google Scholar 

  11. L.C. Evans: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19. Am. Math. Soc., Providence, 1998.

    MATH  Google Scholar 

  12. R. Eymard, T. Galloüet, R. Herbin: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010), 1009–1043.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Eymard, T. Galloüet, R. Herbin: Cell centered discretization of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17 (2009), 173–193.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Eymard, T. Galloüet, R. Herbin: A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007), 403–406.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Eymard, T. Galloüet, R. Herbin: A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006), 326–353.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Eymard, T. Galloüet, R. Herbin: Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII (P.G. Ciarlet, J.-L. Lions, eds.). North-Holland/Elsevier, Amsterdam, 2000, pp. 713–1020.

    Google Scholar 

  17. M. Feistauer, J. Felcman, I. Straškraba: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2003.

    Google Scholar 

  18. T. Galloüet, R. Herbin, M.H. Vignal: Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000), 1935–1972.

    Article  MathSciNet  Google Scholar 

  19. V. Thomée: Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer, Berlin, 2006.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Bradji.

Additional information

The first author was supported in part by Algerian Ministry of Higher Education and Scientific Research under Project # B01120090113 and the PNR Project EMNDG controlled by ANDRU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradji, A., Fuhrmann, J. Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. Appl Math 58, 1–38 (2013). https://doi.org/10.1007/s10492-013-0001-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-013-0001-y

Keywords

MSC 2010

Navigation