Skip to main content
Log in

Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Alt: On the approximation of infinite optimisation problems with an application to optimal control problems. Appl. Math. Optimization 12 (1984), 15–27.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. E. Atkinson: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  3. I. Babuška, A. K. Aziz (eds.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press, New York, 1972.

    Google Scholar 

  4. R. Becker, H. Kapp, R. Rannacher: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000), 113–132.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Brunner, N. Yan: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations. J. Comput. Appl. Math. 67 (1996), 185–189.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Brunner, N. Yan: Finite element methods for optimal control problems governed by integral equations and integro-differential equations. Numer. Math. 101 (2005), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y. Chen, W. Liu: Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int. J. Numer. Anal. Model. 3 (2006), 311–321.

    MATH  MathSciNet  Google Scholar 

  8. Y. Chen, N. Yi, W. Liu: A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46 (2008), 2254–2275.

    Article  MathSciNet  Google Scholar 

  9. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

  10. L. Du, N. Yan: High-accuracy finite element method for optimal control problem. J. Syst. Sci. Complex. 14 (2001), 106–110.

    MATH  MathSciNet  Google Scholar 

  11. F. S. Falk: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973), 28–47.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. A. French, J. T. King: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Appl. Optim. 12 (1991), 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Ge, W. Liu, D. Yang: An equivalent a posteriori error estimate for a constrained optimal control problem. To appear.

  14. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, P. E. Sobolevskii: Integral Operators in Spaces of Summable Functions. Noordhoff International Publishing, Leyden, 1976.

    Google Scholar 

  15. R. Kress: Linear Integral Equations, 2nd Edition. Springer, New York, 1999.

    MATH  Google Scholar 

  16. R. Li, W. Liu, N. Yan: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33 (2007), 155–182.

    Article  MathSciNet  Google Scholar 

  17. Q. Lin N. Yan: Structure and Analysis for Efficient Finite Element Methods. Publishers of Hebei University, Hebei, 1996. (In Chinese.)

    Google Scholar 

  18. Q. Lin, S. Zhang, N. Yan: An acceleration method for integral equations by using interpolation post-processing. Adv. Comput. Math. 9 (1998), 117–129.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.-L. Lions: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin, 1971.

    MATH  Google Scholar 

  20. J.-L. Lions: Some Methods in the Mathematical Analysis of Systems and their Control. Science Press, Beijing, 1981.

    MATH  Google Scholar 

  21. W. Liu, N. Yan: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing, 2008.

    Google Scholar 

  22. W. Liu, N. Yan: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39 (2001), 73–99.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. B. Liu, N. Yan: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001), 285–309.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Meyer, A. Rösch: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004), 970–985.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Neittaanmäki, D. Tiba: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Marcel Dekker, New York, 1994.

    MATH  Google Scholar 

  26. D. Tiba: Lectures on the Optimal Control of Elliptic Equations. University of Jyväskylä Press, Jyväskylä, 1995.

    Google Scholar 

  27. N. Yan: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing, 2008.

    Google Scholar 

  28. N. Yan: Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems. Advances in Scientific Computing and Applications (Y. Lu, W. Sun, T. Tang, eds.). Science Press, Beijing/New York, 2004, pp. 408–419.

    Google Scholar 

  29. P. P. Zabreiko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, L. S. Rakovshchik, V. Ya. Stet’senko: Integral Equations. A Reference Text. Noordhoff International Publishing, Leyden, 1975.

    Google Scholar 

  30. O. C. Zienkiewicz, J. Z. Zhu: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331–1364, Part 2: 1365–1382.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Yan.

Additional information

Dedicated to Ivan Hlaváček on the occasion of his 75th birthday

The research project is supported by the National Basic Research Program under the Grant 2005CB321701 and the National Natural Science Foundation of China under the Grant 10771211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, N. Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations. Appl Math 54, 267–283 (2009). https://doi.org/10.1007/s10492-009-0017-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-009-0017-5

Keywords

MSC 2000

Navigation