Skip to main content
Log in

Remark on stabilization of tree-shaped networks of strings

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider a tree-shaped network of vibrating elastic strings, with feedback acting on the root of the tree. Using the d’Alembert representation formula, we show that the input-output map is bounded, i.e. this system is a well-posed system in the sense of G. Weiss (Trans. Am. Math. Soc. 342 (1994), 827–854). As a consequence we prove that the strings networks are not exponentially stable in the energy space. Moreover, we give explicit polynomial decay estimates valid for regular initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ammari, M. Jellouli: Stabilization of star-shaped networks of strings. Differ. Integral Equations 17 (2004), 1395–1410.

    Google Scholar 

  2. K. Ammari, M. Jellouli, and M. Khenissi: Stabilization of generic trees of strings. J. Dyn. Control Syst. 11 (2005), 177–193.

    Article  MATH  Google Scholar 

  3. K. Ammari, M. Tucsnak: Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM, Control Optim. Calc. Var. 6 (2001), 361–386.

    Article  MATH  Google Scholar 

  4. J. von Below: Classical solvability of linear parabolic equations in networks. J. Differ. Equations 52 (1988), 316–337.

    Google Scholar 

  5. R. Dáger: Observation and control of vibrations in tree-shaped networks of strings. SIAM. J. Control Optim. 43 (2004), 590–623.

    Article  MATH  Google Scholar 

  6. R. Dáger, E. Zuazua: Wave propagation, observation and control in 1-d flexible multi-structures. Mathématiques et Applications, Vol. 50. Springer-Verlag, Berlin, 2006.

    Google Scholar 

  7. R. Dáger, E. Zuazua: Controllability of star-shaped networks of strings. C. R. Acad. Sci. Paris 332 (2001), 621–626.

    MATH  Google Scholar 

  8. R. Dáger, E. Zuazua: Controllability of tree-shaped networks of vibrating strings. C. R. Acad. Sci. Paris 332 (2001), 1087–1092.

    MATH  Google Scholar 

  9. J. Lagnese, G. Leugering, and E. J. P. G. Schmidt: Modeling, Analysis of Dynamic Elastic Multi-link Structures. Birkhäuser-Verlag, Boston-Basel-Berlin, 1994.

    MATH  Google Scholar 

  10. I. Lasiecka, J.-L. Lions, and R. Triggiani: Nonhomogeneous boundary value problems for second-order hyperbolic generators. J. Math. Pures Appl. 65 (1986), 92–149.

    Google Scholar 

  11. J.-L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications. Dunod, Paris, 1968.

    MATH  Google Scholar 

  12. J. L. Lions: Contrôle des systèmes distribués singuliers. Gauthier-Villars, Paris, 1983.

    MATH  Google Scholar 

  13. A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  14. E. J. P. G. Schmidt: On the modelling and exact controllability of networks of vibrating strings. SIAM J. Control Optim. 30 (1992), 229–245.

    Article  MATH  Google Scholar 

  15. G. Weiss: Transfer functions of regular linear systems. Part I. Characterizations of regularity. Trans. Am. Math. Soc. 342 (1994), 827–854.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammari, K., Jellouli, M. Remark on stabilization of tree-shaped networks of strings. Appl Math 52, 327–343 (2007). https://doi.org/10.1007/s10492-007-0018-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-007-0018-1

Keywords

Navigation