Skip to main content
Log in

What is the smallest possible constant in Céa’s lemma?

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider finite element approximations of a second order elliptic problem on a bounded polytopic domain in ℝd with d ∈ {1, 2, 3, ...} The constant C ⩾ 1 appearing in Céa’s lemma and coming from its standard proof can be very large when the coefficients of an elliptic operator attain considerably different values. We restrict ourselves to regular families of uniform partitions and linear simplicial elements. Using a lower bound of the interpolation error and the supercloseness between the finite element solution and the Lagrange interpolant of the exact solution, we show that the ratio between discretization and interpolation errors is equal to \(1 + \mathcal{O}(h)\) as the discretization parameter h tends to zero. Numerical results in one and two-dimensional case illustrating this phenomenon are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška, A. K. Aziz: Survey lectures on the mathematical foundations of the finite element method. Math. Found. Finite Elem. Method Appl. Part. Differ. Equations (A. K. Aziz, ed.). Academic Press, New York, 1972, pp. 1–359.

    Google Scholar 

  2. I. Babuška, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaray: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in the finite element solutions of Laplace’s, Poisson’s, and elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347–392.

    Article  MATH  Google Scholar 

  3. J. Brandts, M. Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489–505.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Brandts, M. Křížek: Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27–36.

    MathSciNet  MATH  Google Scholar 

  5. J. Céa: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier 14 (1964), 345–444.

    MATH  Google Scholar 

  6. P. Clément: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975), 77–84.

    MATH  Google Scholar 

  7. C. M. Chen: Optimal points of stresses for tetrahedron linear element. Natur. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (In Chinese.)

    Google Scholar 

  8. L. Chen: Superconvergence of tetrahedral linear finite elements. Internat. J. Numer. Anal. Model. 3 (2006), 273–282.

    MATH  Google Scholar 

  9. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  10. G. Goodsell, J. R. Whiteman: Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity. Numer. Methods Partial Differ. Equations 6 (1990), 59–74.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Hlaváček, M. KříŽek: On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition. Apl. Mat. 32 (1987), 131–154.

    MathSciNet  MATH  Google Scholar 

  12. V. Kantchev, R. Lazarov: Superconvergence of the gradient of linear finite elements for 3D Poisson equation. In: Proc. Int. Symp. Optimal Algorithms (B. Sendov, ed.). Bulgarian Acad. Sci., Sofia, 1986, pp. 172–182.

    Google Scholar 

  13. M. Křéžek, P. Neittaanmäki: On superconvergence techniques. Acta Appl. Math. 9 (1987), 175–198.

    Article  MathSciNet  Google Scholar 

  14. M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 50. Longman Scientific & Technical, Harlow, 1990.

    MATH  Google Scholar 

  15. M. Křížek, P. Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  16. H.W. Kuhn: Some combinatorial lemmas in topology. IBM J. Res. Develop. 4 (1960), 518–524.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Li: Lagrange interpolation and finite element superconvergence. Numer. Methods Partial Differ. Equations 20 (2004), 33–59.

    Article  MATH  Google Scholar 

  18. Q. Lin, N. N. Yan: The Construction and Analysis for Efficient Finite Elements. Hebei Univ. Publ. House, 1996. (In Chinese.)

  19. L. A. Oganesjan, L. A. Ruhovec: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyč isl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. (In Russian.)

    MathSciNet  Google Scholar 

  20. P. Tong: Exact solutions of certain problems by finite-element method. AIAA J. 7 (1969), 178–180.

    Article  MATH  Google Scholar 

  21. L. B. Wahlbin: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Math. Vol. 1605. Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  22. J. Xu, L. Zikatanov: Some observations on Babuška and Brezzi theories. Numer. Math. 94 (2003), 195–202.

    Article  MathSciNet  MATH  Google Scholar 

  23. Q. D. Zhu: The derivative good points for the finite element method with 2-degree triangular element. Nat. Sci. J. Xiangtan Univ. 1 (1981), 36–44. (In Chinese.)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by Shandong Province Young Scientists Foundation of China 2005BS01008, Institutional Research Plan AV02 101 90503, and by Grant No A 1019201 of the Academy of Sciences of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Křížek, M. What is the smallest possible constant in Céa’s lemma?. Appl Math 51, 129–144 (2006). https://doi.org/10.1007/s10492-006-0009-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-006-0009-7

Keywords

Navigation