Skip to main content
Log in

On a Conserved Penrose-Fife Type System

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We deal with a class of Penrose-Fife type phase field models for phase transitions, where the phase dynamics is ruled by a Cahn-Hilliard type equation. Suitable assumptions on the behaviour of the heat flux as the absolute temperature tends to zero and to +∞ are considered. An existence result is obtained by a double approximation procedure and compactness methods. Moreover, uniqueness and regularity results are proved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Alt, I. Pawlow: A mathematical model of dynamics of non-isothermal phase separation. Physica D 59 (1992), 389–416.

    Google Scholar 

  2. V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976.

    Google Scholar 

  3. H. Brezis: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973.

    Google Scholar 

  4. M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci. Vol. 121. Springer-Verlag, New York, 1996.

    Google Scholar 

  5. J. W. Cahn, J. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958), 258–267.

    Article  Google Scholar 

  6. P. Colli, G. Gilardi, M. Grasselli, and G. Schimperna: The conserved phase-field system with memory. Adv. Math. Sci. Appl. 11 (2001), 265–291.

    Google Scholar 

  7. P. Colli, G. Gilardi, E. Rocca, and G. Schimperna: On a Penrose-Fife phase field model with inhomogeneous Neumann boundary conditions for the temperature. Differ. Integral Equ. 17 (2004), 511–534.

    Google Scholar 

  8. P. Colli, Ph. Laurencot: Weak solutions to the Penrose-Fife phase field model for a class of admissible flux laws. Physica D 111 (1998), 311–334.

    Google Scholar 

  9. P. Colli, Ph. Laurencot, and J. Sprekels: Global solution to the Penrose-Fife phase field model with special heat flux laws. In: Variations of Domains and Free-Boundary Problems in Solid Mechanics. Solid Mech. Appl. 66 (P. Argoul, M. Fremond, Q. S. Nguyen, eds.). Kluwer Acad. Publ., Dordrecht, 1999, pp. 181–188.

    Google Scholar 

  10. P. Colli, J. Sprekels: On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type. Ann. Mat. Pura Appl. IV. Ser. 169 (1995), 269–289.

    Article  Google Scholar 

  11. G. Gilardi, A. Marson: On a Penrose-Fife type system with Dirichlet boundary conditions for the temperature. Math. Methods Appl. Sci. 26 (2003), 1303–1325.

    Article  Google Scholar 

  12. W. Horn, Ph. Laurencot, and J. Sprekels: Global solutions to a Penrose-Fife phase-field model under flux boundary conditions for the inverse temperature. Math. Methods Appl. Sci. 19 (1996), 1053–1072.

    Article  Google Scholar 

  13. W. Horn, J. Sprekels, and S. Zheng: Global existence of smooth solution to the Penrose-Fife model for Ising ferromagnets. Adv. Math. Sci. Appl. 6 (1996), 227–241.

    Google Scholar 

  14. A. Ito, N. Kenmochi, and M. Kubo: Non-isothermal phase transition models with Neumann boundary conditions. Nonlinear Anal. Theory Methods Appl. 53A (2003), 977–996.

    Article  Google Scholar 

  15. N. Kenmochi: Uniqueness of the solution to a nonlinear system arising in phase transition. Proceedings of the Conference Nonlinear Analysis and Applications (Warsaw, 1994). GAKUTO Intern. Ser. Math. Sci. Apl. Vol. 7 (N. Kenmochi, ed.). 1995, pp. 261–271.

  16. N. Kenmochi, M. Kubo: Weak solutions of nonlinear systems for non-isothermal phase transitions. Adv. Math. Sci. Appl. 9 (1999), 499–521.

    Google Scholar 

  17. N. Kenmochi, M. Niezgodka: Evolution equations of nonlinear variational inequalities arising from phase change problems. Nonlinear Anal. Theory Methods Appl. 22 (1994), 1163–1180.

    Article  Google Scholar 

  18. N. Kenmochi, M. Niezgodka: Viscosity approach to modelling non-isothermal diffusive phase separation. Japan J. Ind. Appl. Math. 13 (1996), 135–169.

    Google Scholar 

  19. Ph. Laurencot: Solutions to a Penrose-Fife model of phase field type. J. Math. Anal. Appl. 185 (1994), 262–274.

    Article  Google Scholar 

  20. Ph. Laurencot: Weak solutions to a Penrose-Fife model for phase transitions. Adv. Math. Sci. Appl. 5 (1995), 117–138.

    Google Scholar 

  21. Ph. Laurencot: Weak solutions to a Penrose-Fife model with Fourier law for the temperature. J. Math. Anal. Appl. 219 (1998), 331–343.

    Article  Google Scholar 

  22. J.-L. Lions: Quelques methodes de resolution des problemes aux limites non lineaires. Dunod, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  23. J. Necas: Les methodes directes en theorie des equations elliptiques. Masson, Paris, 1967.

    Google Scholar 

  24. O. Penrose: Statistical Mechanics and the kinetics of phase separation. In: Material Instabilities in Continuum Mechanics (J. Ball, ed.). Oxford University Press, Oxford, 1988, pp. 373–394.

    Google Scholar 

  25. O. Penrose, P. C. Fife: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43 (1990), 44–62.

    Google Scholar 

  26. O. Penrose, P. C. Fife: On the relation between the standard phase-field model and a “ thermodynamically consistent” phase-field model. Physica D 69 (1993), 107–113.

    MathSciNet  Google Scholar 

  27. E. Rocca: The conserved Penrose-Fife system with temperature-dependent memory. J. Math. Anal. Appl. 287 (2002), 177–199.

    Article  MathSciNet  Google Scholar 

  28. E. Rocca, G. Schimperna: The conserved Penrose-Fife system with Fourier heat flux law. Nonlinear Anal. Theory Methods Appl. 53A (2003), 1089–1100.

    Article  Google Scholar 

  29. W. Shen, S. Zheng: On the coupled Cahn-Hilliard equations. Commun. Partial Differ. Equations 18 (1993), 701–727.

    Google Scholar 

  30. J. Sprekels, S. Zheng: Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J. Math. Anal. Appl. 176 (1993), 200–223.

    Article  Google Scholar 

  31. H. E. Stanley: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors would like to acknowledge financial support from MIUR through COFIN grants and from the IMATI of the CNR, Pavia, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilardi, G., Marson, A. On a Conserved Penrose-Fife Type System. Appl Math 50, 465–499 (2005). https://doi.org/10.1007/s10492-005-0033-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-005-0033-z

Keywords

Navigation