Skip to main content
Log in

Kernelized global-local discriminant information preservation for unsupervised domain adaptation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Visual recognition has become inevitable in applications such as object detection, biometric tracking, autonomous vehicles, and social media platforms. The images have multiple factors such as image resolution, illumination, perspective and noise, resulting in a significant mismatch between the training and testing domains. Unsupervised Domain adaptation (DA) has proven an effective way to reduce the differences by adapting the knowledge from a richly labeled source domain to an unlabeled target domain. But the real-time datasets are non-linear and high-dimensional. Though kernelization can handle the non-linearity in data, the dimension needs to be reduced as the salient features of the data lie in a low-dimensional subspace. Current dimensionality reduction approaches in DA preserve either the global or local part of information of manifold data. Specifically, the data manifold’s static (subject-invariant) and dynamic (intra-subject variant) information need to be considered during knowledge transfer. Therefore, to preserve both parts of information Globality-Locality Preserving Projection (GLPP) method is applied to the labeled source domain. The other objectives are preserving the discriminant information and variance of target data, and minimizing the distribution and subspace differences between the domains. With all these objectives, we propose a unique method known as Kernelized Global-Local Discriminant Information Preservation for unsupervised DA (KGLDIP). KGLDIP aims to reduce the discrimination discrepancy geometrically and statistically between the two domains after calculating two projection matrices for each domain. Intensive experiments are conducted using five standard datasets and the analysis reveals that the proposed algorithm excels the other state-of-the-art DA approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Q (2022) Breckon TP (2022) Cross-domain structure preserving projection for heterogeneous domain adaptation. Pattern Recogn 123:108362

    Article  Google Scholar 

  2. Shao L, Zhu F, Li X (2014) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst 26(5):1019–1034

    Article  MathSciNet  Google Scholar 

  3. Zhang J, Li W, Ogunbona P (2017) Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 1859–1867

  4. Long M, Wang J, Ding G, Sun J, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision. pp 2200–2207

  5. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 2066–2073

  6. Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision. pp 2960–2967

  7. Gou J, Yang Y, Yi Z, Lv J, Mao Q, Zhan Y (2020) Discriminative globality and locality preserving graph embedding for dimensionality reduction. Expert Syst Appl 144:113079

    Article  Google Scholar 

  8. Sanodiya RK, Sharma C, Mathew J (2019) Unified framework for visual domain adaptation using globality-locality preserving projections. In: Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26. Springer, pp 340–351

  9. Zhao J, Li L, Deng F, He H, Chen J (2022) Discriminant Geometrical and Statistical Alignment With Density Peaks for Domain Adaptation. IEEE Transactions on Cybernetics 52(2):1193–1206. https://doi.org/10.1109/TCYB.2020.2994875

    Article  Google Scholar 

  10. Pilancı M, Vural E (2022) Domain Adaptation on graphs by learning aligned graph bases. IEEE Trans Knowl Data Eng 34(2):587–600. https://doi.org/10.1109/TKDE.2020.2984212

    Article  Google Scholar 

  11. Huang S, Elgammal A, Huangfu L, Yang D, Zhang X (2014) Globality-locality preserving projections for biometric data dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 15–20

  12. Sanodiya RK, Yao L (2020) Linear discriminant analysis via pseudo labels: a unified framework for visual domain adaptation. IEEE Access 8:200073–200090

    Article  Google Scholar 

  13. Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Networks 22(2):199–210

    Article  Google Scholar 

  14. Long M, Wang J, Ding G, Sun J, Yu PS (2014) Transfer joint matching for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 1410–1417

  15. Lekshmi R, Sanodiya RK, Linda R, Jose BR, Mathew J (2021) Kernelized transfer feature learning on manifolds. In: International Conference on Neural Information Processing. Springer, pp 297–308

  16. Liang J, He R, Sun Z, Tan T (2018) Aggregating randomized clustering-promoting invariant projections for domain adaptation. IEEE Trans Pattern Anal Mach Intell 41(5):1027–1042

    Article  Google Scholar 

  17. Wang J, Feng W, Chen Y, Yu H, Huang M, Yu PS (2018) Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM International Conference on Multimedia. pp 402–410

  18. Liu J, Li J, Lu K (2018) Coupled local-global adaptation for multi-source transfer learning. Neurocomputing 275:247–254

    Article  Google Scholar 

  19. Ghifary M, Balduzzi D, Kleijn WB, Zhang M (2016) Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans Pattern Anal Mach Intell 39(7):1414–1430

    Article  Google Scholar 

  20. Zhang W, Wu D (2020) Discriminative joint probability maximum mean discrepancy (DJP-MMD) for domain adaptation. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, pp 1–8

  21. Sun B, Saenko K (2015) Subspace distribution alignment for unsupervised domain adaptation. BMVC 4:24–1

    Google Scholar 

  22. Gholenji E, Tahmoresnezhad J (2020) Joint discriminative subspace and distribution adaptation for unsupervised domain adaptation. Appl Intell 50(7):2050–2066

    Article  Google Scholar 

  23. Kang Q, Yao S, Zhou M, Zhang K, Abusorrah A (2020) Enhanced subspace distribution matching for fast visual domain adaptation. IEEE Trans Comput Soc Syst 7(4):1047–1057

    Article  Google Scholar 

  24. Luo L, Chen L, Hu S, Lu Y, Wang X (2020) Discriminative and geometry-aware unsupervised domain adaptation. IEEE Trans Cybern 50(9):3914–3927

    Article  Google Scholar 

  25. Wei J, Liang J, He R, Yang J (2018) Learning discriminative geodesic flow kernel for unsupervised domain adaptation. In: 2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE, pp 1–6

  26. Liang J, He R, Sun Z, Tan T (2019) Exploring uncertainty in pseudo-label guided unsupervised domain adaptation. Pattern Recogn 96:106996

    Article  Google Scholar 

  27. Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning. PMLR, pp 97–105

  28. Sun B, Saenko K (2016) Deep coral: Correlation alignment for deep domain adaptation. In: European Conference on Computer Vision. Springer, pp 443–450

  29. Sun H, Chen X, Wang L, Liang D, Liu N, Zhou H (2020) C2dan: An improved deep adaptation network with domain confusion and classifier adaptation. Sensors 20(12):3606

    Article  Google Scholar 

  30. Luo Y, Ren C, Dai D, Yan H (2022) Unsupervised domain adaptation via discriminative manifold propagation. IEEE Trans Pattern Anal Mach Intell 44(03):1653–1669

    Article  Google Scholar 

  31. Huang S, Yang D, Zhou J, Zhang X (2015) Graph regularized linear discriminant analysis and its generalization. Pattern Anal Appl 18:639–650

    Article  MathSciNet  Google Scholar 

  32. Balakrishnama S, Ganapathiraju A (1998) Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing 18(1998):1–8

    Google Scholar 

  33. He X, Niyogi P (2003) Locality preserving projections. Advances in Neural Information Processing Systems 16

  34. Li J, Jing M, Lu K, Zhu L, Shen HT (2019) Locality preserving joint transfer for domain adaptation. IEEE Trans Image Process 28(12):6103–6115. https://doi.org/10.1109/TIP.2019.2924174

    Article  MathSciNet  MATH  Google Scholar 

  35. Dornaika F, Baradaaji A, El Traboulsi Y (2021) Joint Label Inference and Discriminant Embedding. IEEE Trans Neural Netw Learn Syst 33(9):4413–4423

    Article  MathSciNet  MATH  Google Scholar 

  36. Huang S, Yang D, Yang F, Ge Y, Zhang X, Lu J (2013) Face recognition via globality-locality preserving projections. Preprint at http://arxiv.org/abs/1311.1279

  37. Huang S, Elgammal A, Lu J, Yang D (2015) Cross-speed gait recognition using speed-invariant gait templates and globality-locality preserving projections. IEEE Trans Inf Forensics Secur 10(10):2071–2083

    Article  Google Scholar 

  38. Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A (2006) A kernel method for the two-sample-problem. Adv Neural Inf Proces Syst 19

  39. Sim T, Baker S, Bsat M (2002) The CMU pose, illumination, and expression (PIE) database. In: Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition. IEEE, pp 53–58

  40. Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset

  41. Sanodiya RK, Yao L (2020) A subspace based transfer joint matching with laplacian regularization for visual domain adaptation. Sensors 20(16):4367

    Article  Google Scholar 

  42. Nene SA, Nayar SK, Murase H et al (1996) Columbia object image library (COIL-100)

  43. Huang L-Q, Liu Z-G, Dezert J (2021) Cross-domain pattern classification with distribution adaptation based on evidence theory. IEEE Trans Cybern

  44. Venkateswara H, Eusebio J, Chakraborty S, Panchanathan S (2017) Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 5018–5027

  45. Long M, Wang J, Ding G, Pan SJ, Yu PS (2014) Adaptation regularization: a general framework for transfer learning. IEEE Trans Knowl Data Eng 26(5):1076–1089

    Article  Google Scholar 

  46. Xu Y, Fang X, Wu J, Li X, Zhang D (2015) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863

    Article  MathSciNet  MATH  Google Scholar 

  47. Herath S, Harandi M, Porikli F (2017) Learning an invariant Hilbert space for domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 3845–3854

  48. Wang J, Chen Y, Hao S, Feng W, Shen Z (2017) Balanced distribution adaptation for transfer learning. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE, pp 1129–1134

  49. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3):211–252

    Article  MathSciNet  Google Scholar 

  50. Sanodiya RK, Mathew J, Paul B, Jose BA (2019) A kernelized unified framework for domain adaptation. IEEE Access 7:181381–181395

    Article  Google Scholar 

  51. Li S, Song S, Huang G, Ding Z, Wu C (2018) Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Trans Image Process 27(9):4260–4273

    Article  MathSciNet  Google Scholar 

  52. Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: Maximizing for domain invariance. Preprint at http://arxiv.org/abs/1412.3474

  53. Lu H, Shen C, Cao Z, Xiao Y, van den Hengel A (2018) An embarrassingly simple approach to visual domain adaptation. IEEE Trans Image Process 27(7):3403–3417

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen C, Chen Z, Jiang B, Jin X (2019) Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation. Proceedings of the AAAI Conference on Artificial Intelligence 33:3296–3303

    Article  Google Scholar 

  55. Sanodiya RK, Mathew J, Saha S, Tripathi P (2020) Particle swarm optimization based parameter selection technique for unsupervised discriminant analysis in transfer learning framework. Appl Intell 50(10):3071–3089

    Article  Google Scholar 

  56. Zhang L, Fu J, Wang S, Zhang D, Dong Z, Chen CLP (2020) Guide subspace learning for unsupervised domain adaptation. IEEE Trans Neural Netw Learn Syst 31(9):3374–3388

  57. Noori Saray S, Tahmoresnezhad J (2021) Joint distinct subspace learning and unsupervised transfer classification for visual domain adaptation. SIViP 15(2):279–287

  58. Tian L, Tang Y, Hu L, Ren Z, Zhang W (2020) Domain adaptation by class centroid matching and local manifold self-learning. IEEE Trans Image Process 29:9703–9718

    Article  MathSciNet  MATH  Google Scholar 

  59. Lu Y, Wang W, Yuan C, Li X, Lai Z (2020) Manifold transfer learning via discriminant regression analysis. IEEE Trans Multimedia 23:2056–2070

    Article  Google Scholar 

  60. Shi K, Liu Z, Lu W, Ou W, Yang C (2022) Unsupervised domain adaptation based on adaptive local manifold learning. Comput Electr Eng 100:107941

    Article  Google Scholar 

  61. Yu C, Wang J, Chen Y, Huang M (2019) Transfer learning with dynamic adversarial adaptation network. In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE, pp 778–786

  62. Zhou Q, Wang S et al (2021) Cluster adaptation networks for unsupervised domain adaptation. Image Vis Comput 108:104137

    Article  Google Scholar 

  63. Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning. PMLR, pp 2208–2217

  64. Saito K, Watanabe K, Ushiku Y, Harada T (2018) Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 3723–3732

  65. Sun B, Feng J, Saenko K (2017) Correlation alignment for unsupervised domain adaptation. Domain Adaptation in Computer Vision Applications 153–171

  66. Van der Maaten L, Hinton G (2008) Visualizing data using T-SNE. J Mach Learn Res 9(11)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lekshmi R.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R, L., Sanodiya, R.K., Jose, B.R. et al. Kernelized global-local discriminant information preservation for unsupervised domain adaptation. Appl Intell 53, 25412–25434 (2023). https://doi.org/10.1007/s10489-023-04706-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04706-1

Keywords

Navigation