Skip to main content
Log in

Dictionary learning for unsupervised feature selection via dual sparse regression

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

With unlabeled and high-dimensional data explosion, unsupervised feature selection has become an essential step in many machine learning and data mining tasks. Many dictionary learning based models have been successfully developed for unsupervised feature selection in recent years. These models learn an over-complete dictionary to investigate more data distribution information. However, over-complete dictionary learning will generate redundancy in the latent representations for data. Moreover, if data contain noise, dictionary learning will also yield noise in the latent representations. In this paper, we propose a novel unsupervised feature selection framework, named dictionary learning for unsupervised feature selection via dual sparse regression. In this model, dictionary learning is first embedded into a sparse regression to learn an over-complete dictionary with sparse representations for data, in which the redundancy and noise are eliminated. The data are then projected to the representations to evaluate the significance of features using the other sparse regression. We also offer an efficient algorithm to solve this problem and theoretically analyze its convergence and computational complexity, which is proportional to the data dimensionality. Finally, the evaluation results with the k-means task utilizing the selected features on 9 benchmark datasets demonstrate the superiority of our approach in terms of effectiveness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://cs.nyu.edu/~roweis/data/.

  2. http://vision.stanford.edu/resources_links.html#datasets.

  3. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

  4. http://featureselection.asu.edu/datasets.php.

  5. https://sites.google.com/site/zcliustc/home/publication/AAAI2012.m?attredirects=0.

  6. http://web.xidian.edu.cn/rhshang/paper.html.

  7. https://faculty.ist.psu.edu/szw494/publications.html.

  8. https://github.com/AISKYEYE-TJU/CDLFS-AAAI2016.

  9. http://www.zhangdmlab.com/zxf/.

  10. The source code is provided by the author Wei Zheng. Thanks for her generous help.

  11. https://github.com/mohsengh/DLUFS.

References

  1. Shang R, Xu K, Shang F, Jiao L (2020) Sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection. Knowl-Based Syst 187:104830. https://doi.org/10.1016/j.knosys.2019.07.001

    Article  Google Scholar 

  2. Wang F, Zhu L, Li J, Chen H, Zhang H (2021) Unsupervised soft-label feature selection. Knowl-Based Syst 219:106847. https://doi.org/10.1016/j.knosys.2021.106847

    Article  Google Scholar 

  3. Zhou H, Wang X, Zhu R (2022) Feature selection based on mutual information with correlation coefficient. Appl Intell 52(5):5457–5474. https://doi.org/10.1007/s10489-021-02524-x

    Article  Google Scholar 

  4. Cai J, Wang S, Guo W (2021) Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder. Expert Syst Appl 186:115729. https://doi.org/10.1016/j.eswa.2021.115729

    Article  Google Scholar 

  5. Cai J, Fan J, Guo W, Wang S, Zhang Y, Zhang Z (2022) Efficient deep embedded subspace clustering. In: CVPR. https://doi.org/10.1109/CVPR52688.2022.00012, pp 21–30

  6. Cai J, Wang S, Xu C, Guo W (2022) Unsupervised deep clustering via contractive feature representation and focal loss. Pattern Recogn 123:108386. https://doi.org/10.1016/j.patcog.2021.108386

    Article  Google Scholar 

  7. Dhal P, Azad C (2021) A comprehensive survey on feature selection in the various fields of machine learning. Appl Intell 52(4):4543–4581. https://doi.org/10.1007/s10489-021-02550-9

    Article  Google Scholar 

  8. Feofanov V, Devijver E, Amini M-R (2022) Wrapper feature selection with partially labeled data. Appl Intell 52(11):12316–12329. https://doi.org/10.1007/s10489-021-03076-w

    Article  Google Scholar 

  9. Gao W, Hu L, Zhang P (2020) Feature redundancy term variation for mutual information-based feature selection. Appl Intell 50(4):1272–1288. https://doi.org/10.1007/s10489-019-01597-z

    Article  Google Scholar 

  10. Li H, Wang Y, Li Y, Hu P, Zhao R (2020) Joint local structure preservation and redundancy minimization for unsupervised feature selection. Appl Intell 50(12):4394–4411. https://doi.org/10.1007/s10489-020-01800-6

    Article  Google Scholar 

  11. Liu H, Shao M, Fu Y (2018) Feature selection with unsupervised consensus guidance. IEEE Trans Knowl Data Eng 31(12):2319–2331. https://doi.org/10.1109/TKDE.2018.2875712

    Article  Google Scholar 

  12. Wu X, Chen H, Li T, Wan J (2021) Semi-supervised feature selection with minimal redundancy based on local adaptive. Appl Intell 51(11):8542–8563. https://doi.org/10.1007/s10489-021-02288-4

    Article  Google Scholar 

  13. Wu X, Xu X, Liu J, Wang H, Nie F (2021) Supervised feature selection with orthogonal regression and feature weighting. IEEE Trans Neural Netw Learn Syst 32(5):1831–1838. https://doi.org/10.1109/TNNLS.2020.2991336

    Article  MathSciNet  Google Scholar 

  14. Zhang Y, Li H-G, Wang Q, Peng C (2019) A filter-based bare-bone particle swarm optimization algorithm for unsupervised feature selection. Appl Intell 49(8):2889–2898. https://doi.org/10.1007/s10489-019-01420-9

    Article  Google Scholar 

  15. Zhang Y, Lu Z, Wang S (2021) Unsupervised feature selection via transformed auto-encoder. Knowl-Based Syst 215:106748. https://doi.org/10.1016/j.knosys.2021.106748

    Article  Google Scholar 

  16. Wang S, Tang J, Liu H (2015) Embedded unsupervised feature selection. In: AAAI. https://doi.org/10.1609/aaai.v29i1.9211, pp 470–476

  17. Zhu P, Hu Q, Zhang C, Zuo W (2016) Coupled dictionary learning for unsupervised feature selection. In: AAAI. https://doi.org/10.1609/aaai.v30i1.10239, pp 2422–2428

  18. Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: ACM KDD. https://doi.org/10.1145/1835804.1835848, pp 333–342

  19. Li Z, Yang Y, Liu J, Zhou X, Lu H (2012) Unsupervised feature selection using nonnegative spectral analysis. In: AAAI. https://doi.org/10.1609/aaai.v26i1.8289, pp 1026–1032

  20. Hou C, Nie F, Li X, Yi D, Wu Y (2014) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern 44(6):793–804. https://doi.org/10.1109/TCYB.2013.2272642

    Article  Google Scholar 

  21. Shang R, Wang L, Shang F, Jiao L, Li Y (2021) Dual space latent representation learning for unsupervised feature selection. Pattern Recogn 114:107873. https://doi.org/10.1016/j.patcog.2021.107873

    Article  Google Scholar 

  22. Tang C, Bian M, Liu X, Li M, Zhou H, Wang P, Yin H (2019) Unsupervised feature selection via latent representation learning and manifold regularization. Neural Netw 117:163–178. https://doi.org/10.1016/j.neunet.2019.04.015

    Article  Google Scholar 

  23. Shang R, Zhang Z, Jiao L, Liu C, Li Y (2016) Self-representation based dual-graph regularized feature clustering. Neurocomputing 171:1242–1253. https://doi.org/10.1016/j.neucom.2015.07.068

    Article  Google Scholar 

  24. Tang C, Liu X, Li M, Wang P, Chen J, Wang L, Li W (2018) Robust unsupervised feature selection via dual self-representation and manifold regularization. Knowl-Based Syst 145:109–120. https://doi.org/10.1016/j.knosys.2018.01.009

    Article  Google Scholar 

  25. Zhu X, Zhang S, Hu R, Zhu Y, Song J (2018) Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans Knowl Data Eng 30(3):517–529. https://doi.org/10.1109/TKDE.2017.2763618

    Article  Google Scholar 

  26. Yuan A, You M, He D, Li X (2020) Convex non-negative matrix factorization with adaptive graph for unsupervised feature selection. IEEE Trans Cybern 52(6):5522–5534. https://doi.org/10.1109/TCYB.2020.3034462

    Article  Google Scholar 

  27. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11:19–60

    MathSciNet  MATH  Google Scholar 

  28. Xu Y, Chen S, Li J, Luo L, Yang J (2021) Learnable low-rank latent dictionary for subspace clustering. Pattern Recogn 120:108142. https://doi.org/10.1016/j.patcog.2021.108142

    Article  Google Scholar 

  29. Yang X, Jiang X, Tian C, Wang P, Zhou F, Fujita H (2020) Inverse projection group sparse representation for tumor classification: a low rank variation dictionary approach. Knowl-Based Syst 196:105768. https://doi.org/10.1016/j.knosys.2020.105768

    Article  Google Scholar 

  30. Gu X, Cai W, Gao M, Jiang Y, Ning X, Qian P (2022) Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition. IEEE Trans Computat Soc Syst 9(6):1604–1612. https://doi.org/10.1109/TCSS.2022.3153660

    Article  Google Scholar 

  31. Foroughi H, Ray N, Zhang H (2018) Object classification with joint projection and low-rank dictionary learning. IEEE Trans Image Process 27(2):806–821. https://doi.org/10.1109/TIP.2017.2766446

    Article  MathSciNet  MATH  Google Scholar 

  32. Li Z, Zhang Z, Qin J, Li S, Cai H (2019) Low-rank analysis-synthesis dictionary learning with adaptively ordinal locality. Neural Netw 119:93–112. https://doi.org/10.1016/j.neunet.2019.07.013

    Article  Google Scholar 

  33. Miao J, Yang T, Fan C, Chen Z, Fei X, Ju X, Wang K, Xu M (2022) Self-paced non-convex regularized analysis-synthesis dictionary learning for unsupervised feature selection. Knowl-Based Syst 241:108279. https://doi.org/10.1016/j.knosys.2022.108279

    Article  Google Scholar 

  34. Fan Y, Dai J, Zhang Q, Liu S (2019) Joint dictionary learning for unsupervised feature selection. In: ICANN. https://doi.org/10.1007/978-3-030-30484-3_4, pp 46–58

  35. Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: Proceedings of the 26th annual international conference on machine learning, pp 689–696

  36. Zheng W, Xu C, Yang J, Gao J, Zhu F (2018) Low-rank structure preserving for unsupervised feature selection. Neurocomputing 314:360–370. https://doi.org/10.1016/j.neucom.2018.06.010

    Article  Google Scholar 

  37. Parsa MG, Zare H, Ghatee M (2022) Low-rank dictionary learning for unsupervised feature selection. Expert Syst Appl 202:117149. https://doi.org/10.1016/j.eswa.2022.117149

    Article  Google Scholar 

  38. Fan Y, Dai J, Zhang Q (2019) Latent space embedding for unsupervised feature selection via joint dictionary learning. In: IJCNN. https://doi.org/10.1109/ijcnn.2019.8852061, pp 1–8

  39. Zhang Q, Dai J (2018) Cluster structure preserving based on dictionary pair for unsupervised feature selection. In: IJCNN. https://doi.org/10.1109/ijcnn.2018.8489168, pp 1–8

  40. Zhu X, Li X, Zhang S, Ju C, Wu X (2016) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275. https://doi.org/10.1109/TNNLS.2016.2521602

    Article  MathSciNet  Google Scholar 

  41. Ding D, Xia F, Yang X, Tang C (2020) Joint dictionary and graph learning for unsupervised feature selection. Appl Intell 50(5):1379–1397. https://doi.org/10.1007/s10489-019-01561-x

    Article  Google Scholar 

  42. Li S, Tang C, Liu X, Liu Y, Chen J (2019) Dual graph regularized compact feature representation for unsupervised feature selection. Neurocomputing 331:77–96. https://doi.org/10.1016/j.neucom.2018.11.060

    Article  Google Scholar 

  43. Dumitrescu B, Irofti P (2016) Low dimensional subspace finding via size-reducing dictionary learning. In: MLSP. https://doi.org/10.1109/mlsp.2016.7738900, pp 1–6

  44. Yu G, Zhang G, Zhang Z, Yu Z, Deng L (2015) Semi-supervised classification based on subspace sparse representation. Knowl Inf Syst 43(1):81–101. https://doi.org/10.1007/s10115-013-0702-2

    Article  Google Scholar 

  45. Nishihara R, Lessard L, Recht B, Packard A, Jordan M (2015) A general analysis of the convergence of ADMM. In: ICML. https://doi.org/10.48550/arXiv.1502.02009, pp 343–352

  46. Nie F, Huang H, Cai X, Ding C (2010) Efficient and robust feature selection via joint l2, 1 norm minimization. In: NIPS, pp 1813–1821

  47. Goldstein T, O’Donoghue B, Setzer S, Baraniuk R (2014) Fast alternating direction optimization methods. SIAM J Imaging Sci 7(3):1588–1623. https://doi.org/10.1137/120896219

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 62066027), the Natural Science Foundation of Jiangxi Province, China (No. 20212BAB212011), and the Postgraduate Innovation Foundation of Jiangxi Province (No. YC2022-s160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JS., Liu, JX., Wu, JY. et al. Dictionary learning for unsupervised feature selection via dual sparse regression. Appl Intell 53, 18840–18856 (2023). https://doi.org/10.1007/s10489-023-04480-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04480-0

Keywords

Navigation