Skip to main content
Log in

View incremental decremental multi-view discriminant analysis

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The majority of multi-view methods in the literature are batch methods that need all data at the beginning of a training session. However, these methods are not scalable and need to retrain if new data are added or removed from the existing dataset. Incremental methods that support the addition of data samples have been developed, but these methods do not support the addition of views. To address this issue, we present view incremental decremental multi-view discriminant analysis (VIDMvDA) that updates a learned model without retraining when new views are added or existing views are deleted. VIDMvDA is presented in two forms: incremental learning and decremental unlearning. It provides closed-form solutions to update the within-class and the between-class scatter. We have measured the performance of our method against multi-view batch methods on criteria such as discriminability, order independence, classification accuracy, training time, and memory. We prove that using significantly less training time and memory, VIDMvDA constructs a similar discriminant subspace and has the same or better classification accuracy than the batch methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used in this study are publicly available at the following links:

– Handwritten Digits Dataset

– Caltech-7 Dataset

– AwA Dataset

References

  1. Nigam K, Ghani R (2000) Analyzing the effectiveness and applicability of co-training. In: The conference on information and knowledge management. ACM, pp 86–93. https://doi.org/10.1145/354756.354805https://doi.org/10.1145/354756.354805

  2. Wang W, Zhou ZH (2007) Analyzing co-training style algorithms. In: Proceedings of the 18th European conference on machine learning, Warsaw, Poland, vol 4701, pp 454–465

  3. Zhang J, Zhang Y, Ji D, Liu M (2019) Multi-task and multi-view training for end-to-end relation extraction. Neurocomputing 364:245–253. https://doi.org/10.1016/j.neucom.2019.06.087

    Article  Google Scholar 

  4. Hussain T, Muhammad K, Ding W, Lloret J, Baik SW, de Albuquerque VHC (2021) A comprehensive survey of multi-view video summarization. Pattern Recogn 109:107567. https://doi.org/10.1016/j.patcog.2020.107567

    Article  Google Scholar 

  5. Portillo-Portillo J, Leyva R, Sanchez V et al (2018) A view-invariant gait recognition algorithm based on a joint-direct linear discriminant analysis. Applied Intell 48:1200–1217. https://doi.org/10.1007/s10489-017-1043-8

    Article  Google Scholar 

  6. Xu W (2021) Graph-optimized coupled discriminant projections for cross-view gait recognition. Applied Intell 51:8149–8161. https://doi.org/10.1007/s10489-021-02322-5

    Article  Google Scholar 

  7. Farquhar JDR, Hardoon DR, Meng H, Shawe-Taylor J, Szedmák S (2005) Two view learning: SVM-2K, theory and practice. In: Proceedings of the conference on neural information processing systems, pp 355–362. https://doi.org/10.5555/2976248.2976293

  8. Su H, Maji S, Kalogerakis E, Learned-Miller EG (2015) Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the international conference on computer vision. IEEE Computer Society, pp 945–953. https://doi.org/10.1109/ICCV.2015.114https://doi.org/10.1109/ICCV.2015.114

  9. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the conference on computational learning theory. ACM Press, pp 92–100. https://doi.org/10.1145/279943.279962

  10. Yan R, Naphade MR (2005) Semi-supervised cross feature learning for semantic concept detection in videos. In: Proceedings of the conference on computer vision and pattern recognition, pp I:657–663. https://doi.org/10.1109/CVPR.2005.317

  11. Kan M, Shan S, Zhang H, Lao S, Chen X (2016) Multi-view discriminant analysis. IEEE Trans Pattern Anal Mach Intell 38(1):188–194. https://doi.org/10.1109/TPAMI.2015.2435740

    Article  Google Scholar 

  12. You X, Xu J, Yuan W, Jing XY, Tao D, Zhang T (2019) Multi-view common component discriminant analysis for cross-view classification. Pattern Recogn 92:37–51. https://doi.org/10.1016/j.patcog.2019.03.008

    Article  Google Scholar 

  13. Chumachenko K, Raitoharju J, Iosifidis A, Gabbouj M (2021) Speed-up and multi-view extensions to subclass discriminant analysis. Pattern Recog 111:107660. https://doi.org/10.1016/j.patcog.2020.107660

    Article  Google Scholar 

  14. Sharma KK, Seal A (2021) Outlier-robust multi-view clustering for uncertain data. Knowl-Based Syst 211:106567. https://doi.org/10.1016/j.knosys.2020.106567

    Article  Google Scholar 

  15. Li Y, Liao H (2021) Multi-view clustering via adversarial view embedding and adaptive view fusion. Applied Intell 51:1201–1212. https://doi.org/10.1007/s10489-020-01864-4

    Article  Google Scholar 

  16. Zhang GY, Chen XW, Zhou YR, Wang CD, Huang D, He XY (2022) Kernelized multi-view subspace clustering via auto-weighted graph learning. Appl Intell 52:716–731. https://doi.org/10.1007/s10489-021-02365-8

    Article  Google Scholar 

  17. Zhu S, Sun X, Jin D (2016) Multi-view semi-supervised learning for image classification. Neurocomputing 208:136–142. https://doi.org/10.1016/j.neucom.2016.02.072

    Article  Google Scholar 

  18. Wang S, Wang Z, Guo W (2021) Accelerated manifold embedding for multi-view semi-supervised classification. Inf Sci 562:438–451. https://doi.org/10.1016/j.ins.2021.03.040

    Article  MathSciNet  Google Scholar 

  19. Bhattacharjee SD, Tolone WJ, Paranjape VS (2019) Identifying malicious social media contents using multi-view context-aware active learning. Futur Gener Comput Syst 100:365–379. https://doi.org/10.1016/j.future.2019.03.015

    Article  Google Scholar 

  20. Cai JJ, Tang J, Chen QG, Hu Y, Wang X, Huang SJ (2019) Multi-view active learning for video recommendation. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence, China, pp 2053–2059. https://doi.org/10.24963/ijcai.2019/284

  21. Pang S, Ozawa S, Kasabov N (2005) Incremental linear discriminant analysis for classification of data streams. IEEE Trans Syst Man Cybern Part B (Cybern) 35(5):905–914. https://doi.org/10.1109/TSMCB.2005.847744

    Article  Google Scholar 

  22. Zhao H, Yuen PC, Kwok JT (2006) A novel incremental principal component analysis and its application for face recognition. IEEE Trans Syst Man Cybern Part B (Cybern) 36(4):873–886. https://doi.org/10.1109/TSMCB.2006.870645

    Article  Google Scholar 

  23. Nie X, Luo Y, Qiao H, Zhang B, Jiang ZP (2018) An incremental multi-view active learning algorithm for PolSAR data classification. In: International conference on pattern recognition. IEEE Computer Society, pp 2251–2255. https://doi.org/10.1109/ICPR.2018.8545325

  24. Nie X, Fan M, Huang X, Yang W, Zhang B, Ma X (2020) Online semisupervised active classification for multiview PolSAR data. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3026741

  25. Shivagunde SS, Nadapana A, Saradhi VV (2021) Multi-view incremental discriminant analysis. Inf Fusion 68:149–160. https://doi.org/10.1016/j.inffus.2020.10.021

    Article  Google Scholar 

  26. Kumar N, Madhavan S (2021) Incremental weighted linear discriminant analysis for face recognition. Adv Commun Comput Tech 668:677–687

    Article  Google Scholar 

  27. Liu Y, Chen L, Zhu C (2018) Improved robust tensor principal component analysis via low-rank core matrix. IEEE J Sel Top Signal Process 12(6):1378–1389. https://doi.org/10.1109/JSTSP.2018.2873142

    Article  Google Scholar 

  28. Gu B, Quan X, Gu Y, Sheng VS, Zheng G (2018) Chunk incremental learning for cost-sensitive hinge loss support vector machine. Pattern Recogn 83:196–208. https://doi.org/10.1016/j.patcog.2018.05.023

    Article  Google Scholar 

  29. Kashef R (2021) A boosted SVM classifier trained by incremental learning and decremental unlearning approach. Expert Syst Appl 167:114154. https://doi.org/10.1016/j.eswa.2020.114154

    Article  Google Scholar 

  30. Chen Y, Xiong J, Xu W, Zuo J (2019) A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput 22:7435—7445. https://doi.org/10.1007/s10586-018-1772-4

    Article  Google Scholar 

  31. Lee WH, Ko BJ, Wang S, Liu C, Leung KK (2019) Exact incremental and decremental learning for LS-SVM. In: IEEE international conference on image processing (ICIP), pp 2334–2338. https://doi.org/10.1109/ICIP.2019.8803291

  32. Yang M, Deng C, Nie F (2019) Adaptive-weighting discriminative regression for multi-view classification. Pattern Recogn 88:236–245. https://doi.org/10.1016/j.patcog.2018.11.015

    Article  Google Scholar 

  33. López-López E, Regueiro CV, Pardo XM, Franco A, Lumini A (2019) Incremental learning techniques within a self-updating approach for face verification in video-surveillance. In: Iberian conference on pattern recognition and image analysis, vol 11868, pp 25–37

  34. Ravanbakhsh M, Baydoun M, Campo D, Marin P, Martín D, Marcenaro L, Regazzoni CS (2018) Learning multi-modal self-awareness models for autonomous vehicles from human driving. IEEE Trans Intell Transp Syst 22:1866–1873. https://doi.org/10.23919/ICIf.2018.8455667

    Article  Google Scholar 

  35. Zhou P, Shen YD, Du L, Ye F (2019) Incremental multi-view support vector machine. In: Proceedings of the SIAM international conference on data mining, pp 1–9. https://doi.org/10.1137/1.9781611975673.1https://doi.org/10.1137/1.9781611975673.1

  36. Zhou P, Shen YD, Du L, Ye F, Li X (2019) Incremental multi-view spectral clustering. Knowl-Based Syst 174:73–86. https://doi.org/10.1016/j.knosys.2019.02.036

    Article  Google Scholar 

  37. Blake CL, Merz CJ (1998) UCI repository of machine learning databases. https://archive.ics.uci.edu/ml/datasets/Multiple%2BFeatures. Accessed 2 October 2022

  38. Li FF, Fergus R, Perona P (2004) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: CVPR workshops. IEEE Computer Society, p 178. https://doi.org/10.1109/CVPR.2004.383

  39. Lampert CH, Nickisch H, Harmeling S (2009) Learning to detect unseen object classes by between-class attribute transfer. In: IEEE conference on computer vision and pattern recognition, pp 951–958. https://doi.org/10.1109/CVPR.2009.5206594

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj S. Shivagunde.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest and have not received funding from any organization for the submitted work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Deriving the within-class scatter equation

$$ \begin{array}{@{}rcl@{}} \textbf{S}_{W}^{\prime} &=& \sum\limits_{i=1}^{c} \sum\limits_{j=1}^{v} \sum\limits_{k=1}^{n_{ij}} \left( \textbf{y}_{ijk} - \boldsymbol{\mu}_{i}^{\prime} \right) \left( \textbf{y}_{ijk} - \boldsymbol{\mu}_{i}^{\prime} \right)^{T}\\ &&+ \sum\limits_{i=1}^{c} \sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}} \left( \textbf{y}_{ijk}^{\prime} - \boldsymbol{\mu}_{i}^{\prime} \right) \left( \textbf{y}_{ijk}^{\prime} - \boldsymbol{\mu}_{i}^{\prime} \right)^{T}\\ &=& \sum\limits_{i=1}^{c} \sum\limits_{j=1}^{v} \sum\limits_{k=1}^{n_{ij}} \left( \textbf{y}_{ijk} - \boldsymbol{\mu}_{i} - \frac{l_{i} (\textbf{m}_{i}-\boldsymbol{\mu}_{i} )}{n_{i} + l_{i}} \right) \left( \textbf{y}_{ijk} - \boldsymbol{\mu}_{i} - \frac{l_{i} (\textbf{m}_{i}-\boldsymbol{\mu}_{i} )}{n_{i} + l_{i}} \right)^{T}\\ && + \sum\limits_{i=1}^{c} \sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}} \left( \textbf{y}_{ijk}^{\prime} - \boldsymbol{\mu}_{i} - \frac{l_{i} (\textbf{m}_{i} - \boldsymbol{\mu}_{i} )}{n_{i} + l_{i}} \right) \left( \textbf{y}_{ijk}^{\prime} - \boldsymbol{\mu}_{i} - \frac{l_{i} (\textbf{m}_{i}-\boldsymbol{\mu}_{i} )}{n_{i} + l_{i}} \right)^{T} \\ &=& \textbf{S}_{W} + \sum\limits_{i=1}^{c} \frac{1}{(n_{i} + l_{i})^{2}} \left[\vphantom{\sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}}} n_{i} (l_{i})^{2} \left( \textbf{m}_{i} -\boldsymbol{\mu}_{i} \right) \left( \textbf{m}_{i} -\boldsymbol{\mu}_{i} \right)^{T}\right.\\ &&\left.+ {n_{i}^{2}} \sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}} \left( \textbf{y}_{ijk}^{\prime} - \boldsymbol{\mu}_{i} \right) \left( \textbf{y}_{ijk}^{\prime} - \boldsymbol{\mu}_{i} \right)^{T}+ (2 n_{i} l_{i}\right.\\ &&\left.+ {l_{i}^{2}}) \sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}} \left( \textbf{y}_{ijk}^{\prime} - \textbf{m}_{i} \right) \left( \textbf{y}_{ijk}^{\prime} - \textbf{m}_{i} \right)^{T} \right] \\ &=& \textbf{S}_{W} + \sum\limits_{i=1}^{c} \left[\vphantom{\sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}}} \frac{l_{i} n_{i}}{n_{i} + l_{i}} \left( \textbf{m}_{i} -\boldsymbol{\mu}_{i} \right) \left( \textbf{m}_{i} -\boldsymbol{\mu}_{i} \right)^{T}\right.\\ &&\left.+ \sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}} \left( \textbf{y}_{ijk}^{\prime} - \textbf{m}_{i} \right) \left( \textbf{y}_{ijk}^{\prime} - \textbf{m}_{i} \right)^{T} \right] \\ &=& \textbf{S}_{W} + \sum\limits_{i=1}^{c} \left[\vphantom{\sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}}} \frac{l_{i} n_{i}}{n_{i} + l_{i}} \left( \textbf{m}_{i} -\boldsymbol{\mu}_{i} \right) \left( \textbf{m}_{i} -\boldsymbol{\mu}_{i} \right)^{T}\right.\\ &&\left.+ \sum\limits_{j \in \mathscr{A}} \sum\limits_{k=1}^{l_{ij}} \textbf{y}_{ijk}^{\prime} {\textbf{y}_{ijk}^{\prime}}^{T} - l_{i} \textbf{m}_{i} \textbf{m}_{i}^{T} \right] \\ &=& \sum\limits_{j=1}^{v} \sum\limits_{r=1}^{v} \textbf{W}_{j}^{T} \left[ \textbf{S}_{jr} + \sum\limits_{i=1}^{c} \frac{l_{i} n_{ij} n_{ir}}{n_{i} (n_{i} + l_{i})} {\boldsymbol{\mu}_{ij}}^{(\textbf{x})} {\boldsymbol{\mu}_{ir}}^{(\textbf{x})^{T}} \right] \textbf{W}_{r}\\ &&+ \sum\limits_{j \in \mathscr{A}} \textbf{W}_{j}^{T} \left[ {\sum}_{i=1}^{c} \sum\limits_{k=1}^{l_{ij}} \textbf{x}_{ijk}^{\prime} {\textbf{x}_{ijk}^{\prime}}^{T} \right] \textbf{W}_{j} \\ && - \sum\limits_{j \in \mathscr{A}} \sum\limits_{r \in \mathscr{A}} \textbf{W}_{j}^{T} \left[ \sum\limits_{i=1}^{c} \frac{l_{ij} l_{ir}}{l_{i}} \textbf{m}_{ij}^{(x)} \textbf{m}_{ir}^{(x)^{T}} \right] \textbf{W}_{r} \\ &=& \sum\limits_{j=1}^{v} \sum\limits_{r=1}^{v} \textbf{W}_{j}^{T} \textbf{S}_{jr}^{\prime} \textbf{W}_{r} = \textbf{W}^{T} \textbf{S}^{\prime} \textbf{W} \end{array} $$

Where,

$$ \textbf{S}_{jr}^{\prime} = \left\{\begin{array}{ll} - \sum\limits_{i=1}^{c} \frac{l_{ij} l_{ir}}{l_{i}} {\textbf{m}_{ij}}^{(\textbf{x})} {\textbf{m}_{ir}}^{(\textbf{x})^{T}} & \text{case 1} \\[0.4cm] \sum\limits_{i=1}^{c} \bigg[ \sum\limits_{k=1}^{l_{ij}} \textbf{x}_{ijk}^{\prime} {\textbf{x}^{\prime}_{ijk}}^{T} - \frac{l_{ij} l_{ij}}{l_{i}} {\textbf{m}_{ij}}^{(\textbf{x})} {\textbf{m}_{ij}}^{(\textbf{x})^{T}} \bigg] & \text{case 2} \\[0.4cm] \textbf{S}_{jr} + \sum\limits_{i=1}^{c} \frac{n_{i}^{\prime} - n_{i}}{n_{i} n_{i}^{\prime}} n_{ij} n_{ir} {\boldsymbol{\mu}_{ij}}^{(\textbf{x})} {\boldsymbol{\mu}_{ir}}^{(\textbf{x})^{T}} & \text{case 3} \end{array}\right. $$

Appendix B: Deriving the between-class scatter equation

$$ \textbf{S}_{B}^{\prime} = \sum\limits_{i=1}^{c} n_{i}^{\prime} (\boldsymbol{\mu}_{i}^{\prime} - \boldsymbol{\mu}^{\prime}) (\boldsymbol{\mu}_{i}^{\prime} - \boldsymbol{\mu}^{\prime})^{T} $$
$$ \begin{array}{@{}rcl@{}} \textbf{S}_{B}^{\prime} &=&\sum\limits_{i=1}^{c} n_{i}^{\prime} \boldsymbol{\mu}_{i}^{\prime} {\boldsymbol{\mu}_{i}^{\prime}}^{T} - \sum\limits_{i=1}^{c} n_{i}^{\prime} \boldsymbol{\mu}_{i}^{\prime} {\boldsymbol{\mu}^{\prime}}^{T} - \sum\limits_{i=1}^{c} n_{i}^{\prime} \boldsymbol{\mu}^{\prime} {\boldsymbol{\mu}_{i}^{\prime}}^{T} + \sum\limits_{i=1}^{c} n_{i}^{\prime} \boldsymbol{\mu}^{\prime} {\boldsymbol{\mu}^{\prime}}^{T}\\ &=&\sum\limits_{i=1}^{c} n_{i}^{\prime} \boldsymbol{\mu}_{i}^{\prime} {\boldsymbol{\mu}_{i}^{\prime}}^{T} - n^{\prime} \boldsymbol{\mu}^{\prime} {\boldsymbol{\mu}^{\prime}}^{T}\\ &=& \sum\limits_{i=1}^{c} n_{i}^{\prime} \left( \sum\limits_{j=1}^{v^{\prime}} \frac{n_{ij}^{\prime} }{n_{i}^{\prime}} \textbf{W}_{j}^{T} \boldsymbol{\mu}_{ij}^{\prime} \right) \left( \sum\limits_{r=1}^{v^{\prime}} \frac{n_{ir}^{\prime}}{n_{i}^{\prime}} \textbf{W}_{r}^{T} \boldsymbol{\mu}_{ir}^{\prime} \right)^{T} \\ && - n^{\prime} \left( \sum\limits_{j=1}^{v^{\prime}} \sum\limits_{i=1}^{c} \frac{n_{ij}^{\prime}}{n^{\prime}} \textbf{W}_{j}^{T} \boldsymbol{\mu}_{ij}^{\prime} \right) \left( \sum\limits_{r=1}^{v^{\prime}} \sum\limits_{i=1}^{c} \frac{n_{ij}^{\prime}}{n^{\prime}} \textbf{W}_{r}^{T} \boldsymbol{\mu}_{ir}^{\prime} \right)^{T}\\ &=&\sum\limits_{j=1}^{v^{\prime}} \sum\limits_{r=1}^{v^{\prime}} \textbf{W}_{j}^{T} \textbf{D}_{jr}^{\prime} \textbf{W}_{r} \\ \end{array} $$

Where,

$$ \begin{array}{@{}rcl@{}} \textbf{D}_{jr}^{\prime} &=& \sum\limits_{i=1}^{c} \frac{n_{ij}^{\prime} n_{ir}^{\prime}}{n_{i}^{\prime}} {\boldsymbol{\mu}_{ij}^{\prime}}^{(x)} {{\boldsymbol{\mu}_{ir}^{\prime}}^{(x)}}^{T}\\ &&- \frac{1}{n^{\prime}} \left( \sum\limits_{i=1}^{c} n_{ij}^{\prime} {\boldsymbol{\mu}_{ij}^{\prime}}^{(x)} \right) \left( \sum\limits_{i=1}^{c} n_{ir}^{\prime} {{\boldsymbol{\mu}_{ir}^{\prime}}^{(x)}}^{T} \right) \end{array} $$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivagunde, S.S., Saradhi, V.V. View incremental decremental multi-view discriminant analysis. Appl Intell 53, 13593–13607 (2023). https://doi.org/10.1007/s10489-022-04168-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04168-x

Keywords

Navigation