Skip to main content

Advertisement

Log in

Urban ride-hailing demand prediction with multi-view information fusion deep learning framework

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Urban online ride-hailing demand forecasting is an important component of smart city transportation systems. An accurate online ride-hailing demand prediction model can help cities allocate online ride-hailing resources reasonably, reduce energy waste, and reduce traffic congestion. With the massive popularity of online ride-hailing, we can collect a large amount of order data, and how to use deep learning models for improving order prediction accuracy has become a hot research topic. Most of the urban online taxi demand forecasting methods do not sufficiently consider the influencing factors and cannot model the complex nonlinear spatio-temporal relationships. Therefore, we propose a multi-view deep spatio-temporal network framework (MVDSTN) architecture to obtain the spatio-temporal relationships for online ride-hailing demand prediction. Our proposed model includes five views,up-passenger order view, down-passenger order view, POI view, spatial GCN view, POI view and weather view, applies LSTM with attention mechanism to achieve demand prediction for urban online taxi bodies. Experiments Haikou Didi Taxi datasets and Wuhan Taxi datasets prove that our model has good robustness and the prediction method outperforms current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from [DDT’s ”Gaia Project”] but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of [DDT’s ”Gaia Project”].

References

  1. Chen B, Li W (2020) Multitime resolution hierarchical attention-based recurrent highway networks for taxi demand prediction. Math Probl Eng 2020:1–10. https://doi.org/10.1155/2020/4173094https://doi.org/10.1155/2020/4173094

    Google Scholar 

  2. Wang Z, Su X, Ding Z (2020) Long-term traffic prediction based on lstm encoder-decoder architecture. IEEE Trans Intell Transp Syst 1–11. https://doi.org/10.1109/TITS.2020.2995546

  3. Zhou Y, Li J, Chen H, Wu Y, Wu J, Chen L (2020) A spatiotemporal attention mechanism-based model for multi-step citywide passenger demand prediction. Inf Sci 513:372–385. https://doi.org/10.1016/j.ins.2019.10.071

    Article  Google Scholar 

  4. Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp 3634–3640. https://doi.org/10.24963/ijcai.2018/505, arXiv:1709.04875

  5. Ma X, Tao Z, Wang Y, Yu H, Wang Y (2015) Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Trans Res Part C: Emerg Technol 54:187–197. https://doi.org/10.1016/j.trc.2015.03.014

    Article  Google Scholar 

  6. Smith BL, Williams BM, Keith Oswald R (2002) Comparison of parametric and nonparametric models for traffic flow forecasting. Trans Res Part C: Emerg Technol 10(4):303–321. https://doi.org/10.1016/S0968-090X(02)00009-8

    Article  Google Scholar 

  7. Zhan X, Zheng Y, Yi X, Ukkusuri SV (2017) Citywide traffic volume estimation using trajectory data. IEEE Trans Knowl Data Eng 29(2):272–285. https://doi.org/10.1109/TKDE.2016.2621104

    Article  Google Scholar 

  8. Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y (2017) Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4):818. https://doi.org/10.3390/s17040818

    Article  Google Scholar 

  9. Zhang J, Zheng Y, Qi D, Li R, Yi X (2016) DNN-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. https://doi.org/10.1145/2996913.2997016. ACM, Burlingame California, pp 1–4

  10. Chai D, Wang L, Yang Q (2018) Bike flow prediction with multi-graph convolutional networks. arXiv:1807.10934[cs, stat]

  11. Schwemmle N, Ma TY (2021) Hyperparameter optimization for neural network based taxi demand prediction. In: Transport research days, p 2021

  12. Chen Z, Zhao B, Wang Y, Duan Z, Zhao X (2020) Multitask learning and gcn-based taxi demand prediction for a traffic road network. Sensors 20(13):3776. https://doi.org/10.3390/s20133776

    Article  Google Scholar 

  13. Ke J, Zheng H, Yang H, Xiqun C (2017) Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Trans Res Part C: Emerg Technol 85:591–608. https://doi.org/10.1016/j.trc.2017.10.016, arXiv:1706.06279

    Article  Google Scholar 

  14. Geng X, Li Y, Wang L, Zhang L, Yang Q, Ye J, Liu Y (2019) Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proc AAAI Conf Artif Intell 33:3656–3663. https://doi.org/10.1609/aaai.v33i01.33013656

    Google Scholar 

  15. Zhang C, Zhu F, Lv Y, Ye P, Wang FY (2021) MLRNN: Taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis. IEEE Trans Intell Transp Syst 1–11. https://doi.org/10.1109/TITS.2021.3080511

  16. Wu W, Liu T, Yang J (2020) CACRNN: a context-aware attention-based convolutional recurrent neural network for fine-grained taxi demand prediction. Advan Knowl Dis Data Mining 12084:636–648. https://doi.org/10.1007/978-3-030-47426-349

    Article  Google Scholar 

  17. Yang T, Tang X, Liu R (2021) Dual temporal gated multi-graph convolution network for taxi demand prediction. Neural Computing and Applications. https://doi.org/10.1007/s00521-021-06092-6https://doi.org/10.1007/s00521-021-06092-6

  18. Bai L, Yao L, Wang X, Li C, Zhang X (2021) Deep spatial–temporal sequence modeling for multi-step passenger demand prediction. Futur Gener Comput Syst 121:25–34. https://doi.org/10.1016/j.future.2021.03.003

    Article  Google Scholar 

  19. Faial D, Bernardini F, Meza EM, Miranda L, Viterbo J (2020) A methodology for taxi demand prediction using stream learning. In: 2020 International conference on systems, signals and image processing (IWSSIP), IEEE. https://doi.org/10.1109/IWSSIP48289.2020.9145097. Niterói, Brazil, pp 417–422

  20. Bing H, Zhifeng X, Yangjie X, Jinxing H, Zhanwu M (2020) Integrating semantic zoning information with the prediction of road link speed based on taxi GPS data. Complexity 2020:1–14. https://doi.org/10.1155/2020/6939328

    Article  Google Scholar 

  21. Liu D, Mou J, Liu Y, Yang Y (2020) Improved prediction of high taxi demand: a deep spatiotemporal network for hyper-imbalanced data. In: 2020 IEEE 23Rd international conference on intelligent transportation systems (ITSC), IEEE, Rhodes, Greece, pp 1-8. https://doi.org/10.1109/ITSC45102.2020.9294616

  22. Wu Z, Lian G (2020) A novel dynamically adjusted regressor chain for taxi demand prediction. In: 2020 International joint conference on neural networks (IJCNN), IEEE, Glasgow, United Kingdom, pp 1-10. https://doi.org/10.1109/IJCNN48605.2020.9207160https://doi.org/10.1109/IJCNN48605.2020.9207160

  23. Shu P, Sun Y, Zhao Y, Xu G (2020) Spatial-temporal taxi demand prediction using LSTM-CNN. In: 2020 16th IEEE International Conference on Automation Science and Engineering (CASE), pp 1226–1230

  24. Tang J, Liang J, Liu F, Hao J, Wang Y (2021) Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network. Trans Res Part C: Emerg Technol 124:102951. https://doi.org/10.1016/j.trc.2020.102951

    Article  Google Scholar 

  25. Shi X, Gao Z, Lausen L, Wang H, Yeung DY, Wong WK, Woo WC (2017) Deep learning for precipitation nowcasting: a benchmark and a new model. arXiv:1706.03458[cs]

  26. Yang T, Guo Q, Xu L, Sun H (2021) Dynamic pricing for integrated energy-traffic systems from a cyber-physical-human perspective. Renew Sust Energ Rev 136:110419. https://doi.org/10.1016/j.rser.2020.110419https://doi.org/10.1016/j.rser.2020.110419

    Article  Google Scholar 

  27. Zhang C, Zhu F, Wang X, Sun L, Tang H, Lv Y (2020) Taxi demand prediction using parallel multi-task learning model. IEEE Trans Intell Transp Syst 1–10. https://doi.org/10.1109/TITS.2020.3015542https://doi.org/10.1109/TITS.2020.3015542

  28. Kim T, Sharda S, Zhou X, Pendyala RM (2020) A stepwise interpretable machine learning framework using linear regression (LR) and long short-term memory (LSTM): City-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV) service. Trans Res Part C: Emerg Technol 102786:120. https://doi.org/10.1016/j.trc.2020.102786

    Google Scholar 

  29. Xiong Z, Li Jian, Wu H (2021) Understanding operation patterns of urban online ride-hailing services: a case study of Xiamen. Transp Policy 101:100–118. https://doi.org/10.1016/j.tranpol.2020.12.008https://doi.org/10.1016/j.tranpol.2020.12.008

    Article  Google Scholar 

  30. Zhang S, Kang Z, Zhang Z, Lin C, Wang C, Li J (2019) A hybrid model for forecasting traffic flow: using layerwise structure and markov transition matrix. IEEE Access 7:26002–26012. https://doi.org/10.1109/ACCESS.2019.2901118

    Article  Google Scholar 

  31. Yan J, Xiang L, Wu C, Wu H (2020) City-scale taxi demand prediction using multisource urban geospatial data. The international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences XLIII-B4-2020. 213–220. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-213-2020

  32. Hong G, Wang Z, Han T, Ji H (2021) Spatiotemporal multi-graph convolutional network for taxi demand prediction. In: 2021 11Th international conference on information science and technology (ICIST), IEEE, Chengdu, China, pp 242-250. https://doi.org/10.1109/ICIST52614.2021.9440573

  33. Liu S, Jiang H, Chen Z (2021) Quantifying the impact of weather on ride-hailing ridership: evidence from Haikou, China. Travel Behaviour and Society 24:257–269. https://doi.org/10.1016/j.tbs.2021.04.002https://doi.org/10.1016/j.tbs.2021.04.002

    Article  Google Scholar 

  34. Wang J, Zhu W, Sun Y, Tian C (2021) An effective dynamic spatiotemporal framework with external features information for traffic prediction. Appl Intell 51(6):3159–3173. https://doi.org/10.1007/s10489-020-02043-1

    Article  Google Scholar 

  35. Zhang C, Zhu F, Wang X, Sun L, Tang H, Lv Y (2020) Taxi demand prediction using parallel multi-task learning model. IEEE Trans Intell Transp Syst 1–10. https://doi.org/10.1109/TITS.2020.3015542https://doi.org/10.1109/TITS.2020.3015542

  36. Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, Spitzer AI, Ramkumar PN (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. Current Rev Musculoskeletal Med 13(1):69–76. https://doi.org/10.1007/s12178-020-09600-8

    Article  Google Scholar 

  37. Haibo C, Ke D, Fangfang W, Ayamba EC (2020) The spatial effect of tourism economic development on regional ecological efficiency. Environ Sci Pollut Res 27(30):38241–38258. https://doi.org/10.1007/s11356-020-09004-8

    Article  Google Scholar 

  38. Liu Y, Lyu C, Khadka A, Zhang W, Liu Z (2020) Spatio-temporal ensemble method for car-hailing demand prediction. IEEE Trans Intell Transp Syst 21 (12):5328–5333. https://doi.org/10.1109/TITS.2019.2948790https://doi.org/10.1109/TITS.2019.2948790

    Article  Google Scholar 

  39. Haklay M, Weber P (2008) Openstreetmap: user-generated street maps. IEEE Pervasive Comput 7(4):12–18. https://doi.org/10.1109/MPRV.2008.80https://doi.org/10.1109/MPRV.2008.80

    Article  Google Scholar 

  40. Hu Q, Ming L, Xi R, Chen L, Jensen CS, Zheng B (2021) SOUP: a fleet management system for passenger demand prediction and competitive taxi supply. In: 2021 IEEE 37th international conference on data engineering (ICDE), IEEE, Chania, Greece, pp 2657–2660. https://doi.org/10.1109/ICDE51399.2021.00297

  41. Zhao J, Gao Y, Bai Z, Wang H, Lu S (2019) Traffic speed prediction under non-recurrent congestion: based on lstm method and beidou navigation satellite system data. IEEE Intell Trans Syst Mag 11 (2):70–81. https://doi.org/10.1109/MITS.2019.2903431

    Article  Google Scholar 

  42. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. Advan Neural Inform Process Syst 29

  43. Jin G, Cui Y, Zeng L, Tang H, Feng Y, Huang J (2020) Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network. Trans Res Part C: Emerg Technol 102665:117. https://doi.org/10.1016/j.trc.2020.102665

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61772386), Natural Science Foundation of Hubei Province(Grant No. 2020CFB795), Wuhan Institute of City Research Project(Grant No. 2018CYZDKY007)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huyin Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, H., Li, C. et al. Urban ride-hailing demand prediction with multi-view information fusion deep learning framework. Appl Intell 53, 8879–8897 (2023). https://doi.org/10.1007/s10489-022-03966-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03966-7

Keywords

Navigation