Skip to main content
Log in

Underdetermined blind source separation method based on quantum Archimedes optimization algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The performance of the existing underdetermined blind source separation methods is very sensitive to the initial parameters, meanwhile, the existing setting or selection methods of initial parameters need to be improved. Consequently, an effective underdetermined blind source separation method is proposed in this paper to solve the above engineering problems. Based on the Archimedes optimization algorithm and quantum computing theory, this paper proposes a novel intelligent algorithm named quantum Archimedes optimization algorithm, which solves the objective functions for engineering problems. Then the optimal solution obtained through the quantum Archimedes optimization algorithm is used as the initial clustering centers of the K-means clustering algorithm to achieve mixing matrix estimation. In addition, the original initial estimation signal setting of the source recovery based on radial basis function network is converted into an initial solution in population for quantum Archimedes optimization algorithm. The optimal solution obtained through the quantum Archimedes optimization algorithm is used as the new initial estimation signal setting to achieve source recovery. The simulation results show that the proposed underdetermined blind source separation method has higher accuracy than previous methods. The proposed method that is more robust and applicable makes the setting and selection of initial parameters more reasonable so that the performance is no longer limited to the initial parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article. The source codes of QAOA are publicly available at https://github.com/heuzzw/QAOA-matlab-code.

References

  1. Wei C, Guo SX, Ren L, Yu Y (2021) Underdetermined blind source separation for linear instantaneous mixing system in the non-cooperative wireless communication. Phys Commun 45:101255. https://doi.org/10.1016/J.PHYCOM.2020.101255

    Article  Google Scholar 

  2. Wang HC, Du WL, Guo LZ (2020) A sparse underdetermined blind source separation method and its application in fault diagnosis of rotating machinery. Complexity 2020(2):1–17. https://doi.org/10.1155/2020/2428710https://doi.org/10.1155/2020/2428710

    Google Scholar 

  3. Xie Y, Xie K, Xie S (2019) Underdetermined blind source separation for heart sound using higher-order statistics and sparse representation. IEEE Access 7:87606–87616. https://doi.org/10.1109/ACCESS.2019.2925896https://doi.org/10.1109/ACCESS.2019.2925896

    Article  Google Scholar 

  4. Bofill P, Zibulevsky M (2001) Underdetermined blind source separation using sparse representations. Signal Process 81(11):2353–2362. https://doi.org/10.1016/S0165-1684(01)00120-7

    Article  MATH  Google Scholar 

  5. Pando G, Fabian T, Andrzej C (2005) Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans Neural Netw 16(4):992–996. https://doi.org/10.1109/TNN.2005.849840https://doi.org/10.1109/TNN.2005.849840

    Article  Google Scholar 

  6. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72. https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  7. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. proceedings of the sixth international symposium on micro machine and human science, 1995, Nagoya, Japan. https://doi.org/10.1109/MHS.1995.494215

  8. Dorigo M, Di GC (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, 1999 CEC 99. https://doi.org/10.1109/CEC.1999.782657https://doi.org/10.1109/CEC.1999.782657

  9. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697. https://doi.org/10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  10. Wang R (2021) Blind source separation based on adaptive artificial bee colony optimization and kurtosis. Circ Syst Signal Process 2021(4):1–17. https://doi.org/10.1007/s00034-020-01621-5

    MATH  Google Scholar 

  11. Sreelaja NK (2021) Ant colony optimization based light weight binary search for efficient signature matching to filter ransomware. Appl Soft Comput 111:107635. https://doi.org/10.1016/J.ASOC.2021.107635https://doi.org/10.1016/J.ASOC.2021.107635

    Article  Google Scholar 

  12. Zaji AH, Bonakdari H, Khameneh HZ, Khodashenas SR (2020) Application of optimized artificial and radial basis neural networks by using modified genetic algorithm on discharge coefficient prediction of modified labyrinth side weir with two and four cycles. Measurement 152(C):107291. https://doi.org/10.1016/j.measurement.2019.107291https://doi.org/10.1016/j.measurement.2019.107291

    Article  Google Scholar 

  13. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95(2016):51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  14. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169(21):1–12. https://doi.org/10.1016/j.compstruc.2016.03.001https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  15. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  16. Heidari AA, Mirjalili S, Faris H, Alijarah I, Mafarja M, H C (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  17. Li S, Chen M, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  18. Elaziz MA, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 95:106347. https://doi.org/10.1016/j.asoc.2020.106347

    Article  Google Scholar 

  19. Suresha HS, Parthasarathy SS (2021) Detection of alzheimer’s disease using grey wolf optimization based clustering algorithm and deep neural network from magnetic resonance images. Distrib Parallel Databases :1–29. https://doi.org/10.1007/S10619-021-07345-Yhttps://doi.org/10.1007/S10619-021-07345-Y

  20. Necira A, Naimi D, Salhi A, Salhi S, Menani S (2021) Dynamic crow search algorithm based on adaptive parameters for large-scale global optimization. Evol Intell :1–17. https://doi.org/10.1007/S12065-021-00628-4https://doi.org/10.1007/S12065-021-00628-4

  21. Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2020) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551. https://doi.org/10.1007/s10489-020-01893-z

    Article  MATH  Google Scholar 

  22. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  23. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  24. Lam AYS, Li VOK (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput 14(3):381–399. https://doi.org/10.1109/TEVC.2009.2033580

    Article  Google Scholar 

  25. Precup R, David R, Petriu EM, Preitl S, Paul AS (2011) Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity. In: Gaspar-Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing. https://doi.org/10.1007/978-3-642-20505-7_12, vol 96. Springer, Berlin

  26. Zamfirache LA, Precup R, Roman R, Petriu EM (2022) Reinforcement learning-based control using q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system. Inf Sci 583:99–120. https://doi.org/10.1016/j.ins.2021.10.070

    Article  Google Scholar 

  27. Zhang S, Fan F, Li W, Chu S, Pan J (2021) A parallel compact sine cosine algorithm for tdoa localization of wireless sensor network. Telecommun Syst 78:213–223. https://doi.org/10.1007/s11235-021-00804-y

    Article  Google Scholar 

  28. Reju VG, Koh SN, Soon IY (2009) An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal Process 89(9):1762–1773. https://doi.org/10.1016/j.sigpro.2009.03.017

    Article  MATH  Google Scholar 

  29. Sun JD, Li YX, Wen JT, Yan SN (2016) Novel mixing matrix estimation approach in underdetermined blind source separation. Neurocomputing 173:623–632. https://doi.org/10.1016/j.neucom.2015.08.008

    Article  Google Scholar 

  30. Guo Q, Li C, Ruan GQ (2018) Mixing matrix estimation of underdetermined blind source separation based on data field and improved fcm clustering. Symmetry 10(1):21–32. https://doi.org/10.3390/sym10010021

    Article  Google Scholar 

  31. Gao HY, Zhang SB, Su YM, Diao M (2020) Energy harvesting and information transmission mode design for cooperative eh-abled iot applications in beyond 5g networks. Wirel Commun Mob Comput 2020(8):1–17. https://doi.org/10.1155/2020/6136298

    Google Scholar 

  32. Gao HY, Chen MH, Du YN, Jakobsson A (2021) Monostatic mimo radar direction finding in impulse noise. Digit Signal Process 117:103198. https://doi.org/10.1016/j.dsp.2021.103198

    Article  Google Scholar 

  33. Zhang ZW, Gao HY, Ma JY, Wang SH, Sun HL (2021) Blind source separation based on quantum slime mould algorithm in impulse noise. Math Probl Eng 2021:1496156. https://doi.org/10.1155/2021/1496156

    Google Scholar 

  34. Elad M (2007) Optimized projections for compressed sensing. IEEE Trans Signal Process 55 (12):5695–5702. https://doi.org/10.1109/TSP.2007.900760

    Article  MathSciNet  MATH  Google Scholar 

  35. Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed l-0 norm. IEEE Trans Signal Process 57(1):289–301. https://doi.org/10.1109/TSP.2008.2007606

    Article  MathSciNet  MATH  Google Scholar 

  36. Vidya L, Vivekanand V, Shyamkumar U, Mishra D (2015) Rbf network based sparse signal recovery algorithm for compressed sensing reconstruction. Neural Netw 63:66–78. https://doi.org/10.1016/j.neunet.2014.10.010

    Article  MATH  Google Scholar 

  37. Fu WH, Nong B, Chen JH, Liu NA (2017) Source recovery in underdetermined blind source separation based on rbf network. J Beijing Univ Posts Telecommun 40(1):94–98. https://doi.org/10.13190/j.jbupt.2017.01.017

    Google Scholar 

  38. Fu WH, Nong B, Zhou XB, Liu J, Li CL (2018) Source recovery in underdetermined blind source separation based on artificial neural network. China Commun 15(1):140–154. https://doi.org/10.1109/CC.2018.8290813

    Article  Google Scholar 

  39. Wang BC, Li HX, Feng YS, Wen J (2021) An adaptive fuzzy penalty method for constrained evolutionary optimization. Inf Sci 571:358–374. https://doi.org/10.1016/j.ins.2021.03.055

    Article  MathSciNet  Google Scholar 

  40. Tao R, Meng Z, Zhou HL (2021) A self-adaptive strategy based firefly algorithm for constrained engineering design problems. Appl Soft Comput 107:107417. https://doi.org/10.1016/J.ASOC.2021.107417

    Article  Google Scholar 

  41. Zheng S, Ding RQ, Zhang JH, Xu B (2021) Global energy efficiency improvement of redundant hydraulic manipulator with dynamic programming. Energy Convers Manag 230:113762. https://doi.org/10.1016/j.enconman.2020.113762

    Article  Google Scholar 

  42. Du XP, Cheng LZ, Liu LF (2013) A swarm intelligence algorithm for joint sparse recovery. IEEE Signal Process Lett 20(6):611–614. https://doi.org/10.1109/LSP.2013.2260822

    Article  Google Scholar 

  43. Lin Q, Hu B, Tang Y, Zhang LY, Chen J, Wang X, Ming Z (2017) A local search enhanced differential evolutionary algorithm for sparse recovery. Appl Soft Comput 57:144–163. https://doi.org/10.1016/j.asoc.2017.03.034

    Article  Google Scholar 

  44. Erko ME, Karaboa N (2021) Sparse signal reconstruction by swarm intelligence algorithms. Eng Sci Technol Int J 24(2):319–330. https://doi.org/10.1016/j.jestch.2020.09.006

    Google Scholar 

  45. Zibulevsky M, Pearlmutter BA (2001) Blind source separation by sparse decomposition in a signal dictionary. Neural Comput 13(4):863–882. https://doi.org/10.1162/089976601300014385

    Article  MATH  Google Scholar 

  46. Hurley N, Rickard S (2009) Comparing measures of sparsity. IEEE Trans Inf Theory 55 (10):4723–4741. https://doi.org/10.1109/TIT.2009.2027527

    Article  MathSciNet  MATH  Google Scholar 

  47. Kleinsteuber M, Shen H (2012) Blind source separation with compressively sensed linear mixtures. IEEE Signal Process Lett 19(2):107–110. https://doi.org/10.1109/LSP.2011.2181945

    Article  Google Scholar 

  48. Clerc M, Kennedy J (2002) The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73. https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  49. Molga M, Smutnicki C (2005) Test functions for optimization needs. Comput Inform Sci :1–43

  50. Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4 (2):150–194. https://doi.org/10.1504/IJMMNO.2013.055204

    MATH  Google Scholar 

  51. Qu BY, Liang JJ, Wang ZY, Chen Q, Suganthan PN (2016) Novel benchmark functions for continuous multimodal optimization with comparative results. Swarm Evol Comput 26:23–34. https://doi.org/10.1016/j.swevo.2015.07.003

    Article  Google Scholar 

  52. Wu G, Mallipeddi R, Suganthan PN (2017) Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization. http://www.ntu.edu.sg/home/EPNSugan/indexfiles/CEC2017

  53. Masadeh R, Mahafzah BA, Sharieh A (2019) Sea lion optimization algorithm. Int J Adv Comput Sci Appl (IJACSA) 10(5):388–395. https://doi.org/10.14569/IJACSA.2019.0100548

    Google Scholar 

  54. Tan Y, Zhu YC (2010) Fireworks algorithm for optimization. In: Tan Y, Shi YH, Tan KC (eds) Advances in Swarm Intelligence, vol 6145. Springer, pp 355–364. https://doi.org/10.1007/978-3-642-13495-1_44

  55. Xie Y, Xie K, Wu ZZ, Xie SL (2019) Underdetermined blind source separation of speech mixtures based on k-means clustering. In: 2019 Chinese control conference (CCC), IEEE, vol. 1, Shanghai Systems Science Press, pp 59–63

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no.61571149), the Natural Science Foundation of Heilongjiang Province (no.LH2020F017), and the Initiation Fund for Postdoctoral Research in Heilongjiang Province (no.LBH-Q19098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Gao.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhiwei Zhang, Shihao Wang and Helin Sun are contributed equally to this work.

Appendix A Test functions

Appendix A Test functions

Table 9 30 test functions for experiments

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Zhang, Z., Wang, S. et al. Underdetermined blind source separation method based on quantum Archimedes optimization algorithm. Appl Intell 53, 13763–13800 (2023). https://doi.org/10.1007/s10489-022-03962-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03962-x

Keywords

Navigation