Skip to main content
Log in

Automatic clustering of colour images using quantum inspired meta-heuristic algorithms

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This work explores the effectiveness and robustness of quantum computing by conjoining the principles of quantum computing with the conventional computational paradigm for the automatic clustering of colour images. In order to develop such a computationally efficient algorithm, two population-based meta-heuristic algorithms, viz., Particle Swarm Optimization (PSO) algorithm and Enhanced Particle Swarm Optimization (EPSO) algorithm have been consolidated with the quantum computing framework to yield the Quantum Inspired Particle Swarm Optimization (QIPSO) algorithm and the Quantum Inspired Enhanced Particle Swarm Optimization (QIEPSO) algorithm, respectively. This paper also presents a comparison between the proposed quantum inspired algorithms with their corresponding classical counterparts and also with three other evolutionary algorithms, viz., Artificial Bee Colony (ABC), Differential Evolution (DE) and Covariance Matrix Adaption Evolution Strategies (CMA-ES). In this paper, twenty different sized colour images have been used for conducting the experiments. Among these twenty images, ten are Berkeley images and ten are real life colour images. Three cluster validity indices, viz., PBM, CS-Measure (CSM) and Dunn index (DI) have been used as objective functions for measuring the effectiveness of clustering. In addition, in order to improve the performance of the proposed algorithms, some participating parameters have been adjusted using the Sobol’s sensitivity analysis test. Four segmentation evaluation metrics have been used for quantitative evaluation of the proposed algorithms. The effectiveness and efficiency of the proposed quantum inspired algorithms have been established over their conventional counterparts and the three other competitive algorithms with regards to optimal computational time, convergence rate and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alata O, Quintard L (2009) Is there a best color space for color image characterization or representation based on multivariate gaussian mixture model. Comput Vis Image Underst 113:867–877

    Google Scholar 

  2. Babak ZA, Omid BH, Chu X (2018) Crow search algorithm (CSA). Springer, Singapore, pp 143–149

    Google Scholar 

  3. BarkleyImages (2020) Barkley images. Accessed: 01 Jan 2020

  4. Bhattacharyya S, Snásel V, Dey A, Dey S, Konar D (2018) Quantum spider monkey optimization (qsmo) algorithm for automatic gray-scale image clustering. In: 2018 International conference on advances in computing, communications and informatics (ICACCI), pp 1869–1874

  5. Biedrzycki R (2019) On equivalence of algorithm’s implementations: the cma-es algorithm and its five implementations, pp 247–248

  6. Blatt R, Häiffner H, Roos C, Becher C, Schmidt-Kaler F (2004) Course 5 - quantum information processing in ion traps i. In: Estève D, Raimond J-M, Dalibard J (eds) Quantum entanglement and information processing, volume 79 of Les Houches, pp 223–260. Elsevier

  7. Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Pattern Recognit Lett 19(8):741–747

    MATH  Google Scholar 

  8. Bradley PS, Fayyad UM (1998) Refining initial points for k-means clustering. In: Proceedings of the fifteenth international conference on machine learning. Morgan Kaufmann Publishers Inc., pp 91–99

  9. Busin L, Vandenbroucke N, Macaire L (2008) Color spaces and image segmentation. Adv Imag Electron Phys 151:65–168

    Google Scholar 

  10. Chen JH, Chang YC, Hung WL (2018) A robust automatic clustering algorithm for probability density functions with application to categorizing color images. Commun Stat - Simul Comput 47(7):2152–2168

    MathSciNet  MATH  Google Scholar 

  11. Chiang HP, Chou YH, Chiu CH, Kuo SY, Huang YM (2013) A quantum-inspired tabu search algorithm for solving combinatorial optimization problems. Soft Comput 18:1771–1781

    Google Scholar 

  12. Chmiel W, Kwiecień J (2018) Quantum-inspired evolutionary approach for the quadratic assignment problem. Entropy 20:10

    Google Scholar 

  13. Chou CH, Su MC, Lai E (2004) A new cluster validity measure and its application to image compression. Pattern Anal Applic 7(2):205–220

    MathSciNet  Google Scholar 

  14. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI-1(2):224–227

    Google Scholar 

  15. Dey A, Bhattacharyya S, Dey S, Platos J, Snásel V (2019) Quantum-inspired bat optimization algorithm for automatic clustering of grayscale images. In: Recent trends in signal and image processing. Springer, Singapore, pp 89–101

  16. Dey A, Dey S, Bhattacharyya S, Platos J, Snásel V (2020) Novel quantum inspired approaches for automatic clustering of gray level images using particle swarm optimization, spider monkey optimization and ageist spider monkey optimization algorithms. Appl Soft Comput 88:106040

    Google Scholar 

  17. Dey A, Dey S, Bhattacharyya S, Platos J, Snasel V (2020) Quantum inspired automatic clustering algorithms: a comparative study of genetic algorithm and bat algorithm, pp 89–114. De Gruyter

  18. Dey A, Dey S, Bhattacharyya S, Platos J, Snasel V (2021) Quantum inspired meta-heuristic approaches for automatic clustering of colour images. International Journal of Intelligent Systems, 36

  19. Dey A, Dey S, Bhattacharyya S, Snasel V, Hassanien AE (2018) Simulated annealing based quantum inspired automatic clustering technique, pp 73–81. Cairo

  20. Dey S, Bhattacharyya S, Maulik U (2017) Efficient quantum inspired meta-heuristics for multi-level true colour image thresholding. Appl Soft Comput 56:472–513

    Google Scholar 

  21. Dey S, Bhattacharyya S, Maullik U (2018) Quantum-inspired automatic clustering technique using ant colony optimization algorithm, pp 27–54. IGI Global

  22. Dey S, Bhattacharyya S, Maullik U (2018) Quantum-inspired automatic clustering technique using ant colony optimization algorithm

  23. Dey S, De S, Paul S (2021) A new approach of data clustering using quantum inspired particle swarm optimization based fuzzy c-means. In: 2021 11th International conference on cloud computing, data science engineering (confluence), pp 59–64

  24. Dey S, Saha I, Bhattacharyya S, Maulik U (2014) Multi-level thresholding using quantum inspired meta-heuristics. Knowl-Based Syst 67:373–400

    Google Scholar 

  25. Djemame S, Batouche M, Oulhadj H, Siarry P (2019) Solving reverse emergence with quantum pso application to image processing. Soft Comput 23(16):6921–6935

    Google Scholar 

  26. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Google Scholar 

  27. Fahdil MA, Al-Azawi AF, Said S (2010) Operations algorithms on quantum computer. IJCSNS International Journal of Computer Science and Network Security, 10

  28. Fan SKS, Jen CH (2019) An enhanced partial search to particle swarm optimization for unconstrained optimization. Mathematics 7(4):357

    Google Scholar 

  29. Flury B (1997) A first course in multivariate statistics. Springer Texts in Statistics

  30. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    MATH  Google Scholar 

  31. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Statist 11(1):86–92

    MathSciNet  MATH  Google Scholar 

  32. Frigui H, Krishnapuram R (1999) A robust competitive clustering algorithm with applications in computer vision. IEEE Trans Pattern Anal Mach Intell 21(5):450–465

    Google Scholar 

  33. Gandhi TN, Alam T (2017) Quantum genetic algorithm with rotation angle refinement for dependent task scheduling on distributed systems. In: 2017 Tenth international conference on contemporary computing (IC3), pp 1–5. IEEE

  34. Geraud T, Strub P, Darbon J (2001) Color image segmentation based on automatic morphological clustering. In: Proceedings 2001 international conference on image processing (Cat. No.01CH37205), vol 3, pp 70–73

  35. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99

    Google Scholar 

  36. Gulhane A, Paikrao P, Chaudhari D (2011) A review of image data clustering techniques. Int J Soft Comput Eng (IJSCE) 2(1):212–215

    Google Scholar 

  37. Han KH, Kim JH (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6(6):580–593

    Google Scholar 

  38. Hey T (1999) Quantum computing: an introduction. Computi Control Eng J 10:105–112

    Google Scholar 

  39. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Inc., USA

    MATH  Google Scholar 

  40. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31 (3):264–323

    Google Scholar 

  41. Jurio A, Pagola M, Galar M, Lopez-Molina C, Paternain D (2010) . A comparison study of different color spaces in clustering based image segmentation 81:532–541

    Google Scholar 

  42. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc. IEEE international conference on neural networks, Perth, pp 1942–1948

  43. Lee Y, Joo J, Lee S (2019) Hybrid quantum linear equation algorithm and its experimental test on ibm quantum experience. Sci Rep, 9

  44. Lei T, Liu P, Jia X, Zhang X, Meng H, Nandi AK (2020) Automatic fuzzy clustering framework for image segmentation. IEEE Trans Fuzzy Syst 28(9):2078–2092

    Google Scholar 

  45. Liu J, Yang Y-H (1994) Multiresolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16(7):689–700

    MathSciNet  Google Scholar 

  46. Mahseur M, Ramdane-Cherif A, Acheli D, Meraihi Y (2017) A quantum-inspired binary firefly algorithm for qos multicast routing. Inte J Metaheuristics 6(4):309

    Google Scholar 

  47. Moore M, Narayanan A (1995) Quantum-inspired computing. Department of Computer Science, Old Library, University of Exeter, Exeter EX4 4PT, UK

  48. Murtagh F (1983) A survey of recent advances in hierarchical clustering algorithms. Comput J 26(4):354–359

    MATH  Google Scholar 

  49. Narayanan A, Moore M (1996) Quantum-inspired genetic algorithms. In: Proceedings of IEEE international conference on evolutionary computation, pp 61–66

  50. Orts F, Ortega G, Garzón EM (2019) A faster half subtractor circuit using reversible quantum gates. Baltic J Modern Comput 7(19):99–111

    Google Scholar 

  51. Pagola M, Ortiz R, Ignacio I, Sola H, Barrenechea E, Aparicio-Tejo P, Lamsfus C, Lasa B (2009) New method to assess barley nitrogen nutrition status based on image colour analysis comparison with spad-502. Comput Electron Agric 65:213– 218

    Google Scholar 

  52. Pakhira M, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters. Pattern Recogn 37(3):487– 501

    MATH  Google Scholar 

  53. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    MathSciNet  Google Scholar 

  54. Pelleg D, Moore A (2000) X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the 17th international conf. on machine learning. Morgan Kaufmann, pp 727–734

  55. Platt JC, Czerwinski M, Field BA (2003) Phototoc: automatic clustering for browsing personal photographs. In: Fourth international conference on information, communications and signal processing, 2003 and the fourth Pacific rim conference on multimedia. Proceedings of the 2003 joint, vol 1, pp 6–10

  56. RealLifeImages (2020) Real life images. Accessed 15 Jan 2020

  57. Rohlf FJ (1982) 12 single-link clustering algorithms. In: Classification pattern recognition and reduction of dimensionality, volume 2 of handbook of statistics. Elsevier, pp 267– 284

  58. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    MATH  Google Scholar 

  59. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270

    MathSciNet  MATH  Google Scholar 

  60. Saltelli A, Soboĺ IM (1995) Sensitivity analysis for nonlinear mathematical models: numerical experience. Matematicheskoe Modelirovanie 7(11):16–28

    MathSciNet  MATH  Google Scholar 

  61. Schuld M, Killoran N (2019) Quantum machine learning in feature Hilbert spaces. Phys Rev Lett 122:040504

    Google Scholar 

  62. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math Comput Simul 55(1–3):271–280

    MathSciNet  MATH  Google Scholar 

  63. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    MathSciNet  MATH  Google Scholar 

  64. Tirumala SS (2018) A quantum-inspired evolutionary algorithm using gaussian distribution-based quantization. Arab J Sci Eng 43:471–482

    MATH  Google Scholar 

  65. Vandenbroucke N, Macaire L, Postaire J (2003) Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis. Comput Vis Image Underst 90:190–216

    Google Scholar 

  66. Xu Y, Fan P, Yuan L (2013) A simple and efficient artificial bee colony algorithm. Math Probl Eng, 2013

  67. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspired Comput 2(2):78–84

    Google Scholar 

  68. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010), pp 65–74. Springer

  69. Yang XS, Deb S (2010) Cuckoo search via levey flights, pp 210–214

  70. Yang YJ, Kuo SY, Lin FJ, Liu II, Chou YH (2013) Improved quantum-inspired tabu search algorithm for solving function optimization problem. In: 2013 IEEE International conference on systems man, and cybernetics, pp 823–828

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Bhattacharyya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF )

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A., Bhattacharyya, S., Dey, S. et al. Automatic clustering of colour images using quantum inspired meta-heuristic algorithms. Appl Intell 53, 9823–9845 (2023). https://doi.org/10.1007/s10489-022-03806-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03806-8

Keywords

Navigation