Skip to main content
Log in

Deep reservoir calculation model and its application in the field of temperature and humidity prediction

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In the context of global climate change, an effective prediction of temperature and humidity can improve people’s living environment and quality of life. To handle the problem of temperature and humidity series prediction, this study proposes a deep reservoir calculation model, namely DeepSALR. The DeepSALR uses a deep neural network to pre-train the datapoints before capturing multiple degrees of abstract information in the series. Then, the feature extraction datapoints are fed into the reservoir calculation model for supervised prediction. Considering the problem that using single neurons as the excitation function is prone to produce singular solutions, this study proposes to use wavelet neurons to replace part of sigmoid neurons, and then obtains an enhanced DeepSALR model, namely eDeepSALR. At the same time, this study also proposes a hybrid particle swarm optimization (HPSO) algorithm to determine the node numbers in deep neural networks. Extensive experimental results show that the eDeepSALR is capable of solving temperature and humidity prediction problems, and that it outperforms existing models in terms of prediction accuracy and short-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Karevan Z, Suykens J (2020) Transductive LSTM for time-series prediction: an application to weather forecasting. Neural Netw 125:1–9

    Article  Google Scholar 

  2. Fang Z, Zheng Z, Feng X, Shi D, Lin Z, Gao Y (2021) Investigation of outdoor thermal comfort prediction models in South China: a case study in Guangzhou. Build Environ 188:107424

    Article  Google Scholar 

  3. Wang Y, Bai Y, Yang L, Li H (2021) Short time air temperature prediction using pattern approximate matching. Energy Build 244:111036

    Article  Google Scholar 

  4. Cachim P (2011) Using artificial neural networks for calculation of temperatures in timber under fire loading. Constr Build Mater 25(11):4175–4180

    Article  Google Scholar 

  5. Coskun C, Erturk M, Oktay Z, Hepbasli A (2014) A new approach to determine the outdoor temperature distributions for building energy calculations. Energy Convers Manag 78:165–172

    Article  Google Scholar 

  6. Bhargava C, Banga V, Singh Y (2018) Fabrication and failure prediction of carbon-alum solid composite electrolyte based humidity sensor using ANN. Sci Eng Compos Mater 25(4):773–780

    Article  Google Scholar 

  7. Johnstone C, Sulungu E (2021) Application of neural network in prediction of temperature: a review. Neural Comput Applic 33(18):11487–11498

    Article  Google Scholar 

  8. Lu T, Viljanen M (2009) Prediction of indoor temperature and relative humidity using neural network models: model comparison. Neural Comput Applic 18(4):345–357

    Article  Google Scholar 

  9. Kleiner J, Stuckenberger M, Komsiyska L, Endisch C (2021) Real-time core temperature prediction of prismatic automotive lithium-ion battery cells based on artificial neural networks. J Energy Storage 39:102588

    Article  Google Scholar 

  10. Bakar S, Ghazali R, Ismail L (2014) Implementation of modified cuckoo search algorithm on functional link neural network for temperature and relative humidity prediction. Lect Notes Electr Eng 285:151–158

    Article  Google Scholar 

  11. Zhu H, Ren C, Cao S (2020) Fast prediction for multi-parameters (concentration, temperature and humidity) of indoor environment towards the online control of HVAC system. Build Simul 14(3):649–665

    Article  Google Scholar 

  12. Jaeger H (2001) The echo state approach to analysing and training recurrent neural networks-with an erratum note, Bonn, Germany: German national research center for information technology gmd technical report. vol 148, p 34

  13. Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80

    Article  Google Scholar 

  14. Zhang G, Zhang C, Zhang W (2019) Evolutionary echo state network for long-term time series prediction: on the edge of chaos. Appl Intell 50:893–904

    Article  Google Scholar 

  15. Rodan A, Tino P (2011) Minimum complexity echo state network. IEEE Trans Neural Netw 22(1):131–144

    Article  Google Scholar 

  16. Bala A, Ismail I, Ibrahim R, Sait S, Salami H (2019) Prediction using cuckoo search optimized echo state network. Arab J Sci Eng 44(11):9769–9778

    Article  Google Scholar 

  17. Zhang M, Wang B, Zhou Y, Gu J, Wu Y (2021) Prediction of chaotic time series based on SALR model with its application on heating load prediction. Arab J Sci Eng 46(9):8171–8187

    Article  Google Scholar 

  18. Bao Q, Gao Y, Xin W, Zhou F (2018) An integrated model for traffic flow prediction based on the wavelet transform, Ningbo, China, 2018 24th asia-pacific conference on communications (APCC), pp 88–93

  19. Sun X, Li T, Li Y, Li Q, Huang Y, Liu J (2018) Recurrent neural system with minimum complexity: a deep learning perspective. Neurocomputing 275:1333–1349

    Article  Google Scholar 

  20. Sun X, Gui G, Li Y, Liu R, An Y (2019) Resinnet: a novel deep neural network with feature reuse for internet of things. IEEE Internet Things J 6(1):679–691

    Article  Google Scholar 

  21. Hinton G (2009) Deep belief networks. Scholarpedia 4(6):5947

    Article  Google Scholar 

  22. Dai X, Cheng J, Gao Y, Guo S, Yang X, Xu X, Cen Y (2020) Deep belief network for feature extraction of urban artificial targets. Math Probl Eng 10:1–13

    Google Scholar 

  23. Huang W, Song G, Hong H, Xie K (2014) Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans Intell Transp Syst 15(5):2191–2201

    Article  Google Scholar 

  24. Kuremoto T, Kimura S, Kobayashi K, Obayashi M (2014) Time series forecasting using a deep belief network with restricted boltzmann machines. Neurocomputing 137(15):47–56

    Article  Google Scholar 

  25. Shen F, Chao J, Zhao J (2015) Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167:243–253

    Article  Google Scholar 

  26. Zhao L, Zhou Y, Lu H, Fujita H (2019) Parallel computing method of deep belief networks and its application to traffic flow prediction. Knowl-Based Syst 163:972–987

    Article  Google Scholar 

  27. Wang L, Zhang T, Wang X, Jin X, Xu J, Yu J, Zhang H, Zhao Z (2019) An approach of improved Multivariate timing-random deep belief net modelling for algal bloom prediction. Biosyst Eng 177:130–138

    Article  Google Scholar 

  28. Sun X, Li T, Li Q, Huang Y, Li Y (2017) Deep belief echo-state network and its application to time series prediction. Knowl-Based Syst 130:197–29

    Article  Google Scholar 

  29. Wang S, Yang X, Wei C (2006) Harnessing non-linearity by sigmoid-wavelet hybrid echo state networks (swhesn). world congress on intelligent control and automation, IEEE

  30. Wei J, Lv J, Yi Z (2019) A new sparse restricted boltzmann machine. Int J Pattern Recognit Artif Intell 33(10):1951004

    Article  Google Scholar 

  31. Nasrin S, Drobitch J, Bandyopadhyay S, Trivedi A (2019) Low power restricted boltzmann machine using Mixed-Mode Magneto-Tunneling junctions. IEEE Electron Device Lett 40(2):345–348

    Article  Google Scholar 

  32. Qiao J, Wang L (2021) Nonlinear system modeling and application based on restricted Boltzmann machine and improved BP neural network. Appl Intell 51:37–50

    Article  Google Scholar 

  33. Fang L, Shen G, Luo H, Chen C, Zhao Z (2020) Automatic extraction of roadside traffic facilities from mobile laser scanning point clouds based on deep belief network. IEEE Trans Intell Transp Syst 22(4):1964–1980

    Article  Google Scholar 

  34. Schölkopf B, Platt J, Hofmann T (2007) Greedy Layer-Wise training of deep networks. Adv Neural Inf Process Syst 19:153–160

    Google Scholar 

  35. Qiao Y, van Lew B, Lelieveldt B, Staring M (2016) Fast automatic step size estimation for gradient descent optimization of image registration. IEEE Trans Med Imaging 35(2):391–403

    Article  Google Scholar 

  36. Zhang H, Hu B, Wang X, Xu J, Wang L, Sun Q, Wang Z (2021) Self-organizing deep belief modular echo state network for time series prediction. Knowl Based Syst 222:107007

    Article  Google Scholar 

  37. Tungadio D, Jordaan J, Siti M (2016) Power system state estimation solution using modified models of PSO algorithm: comparative study. Measurement 92:508–523

    Article  Google Scholar 

  38. Tsai H (2017) Unified particle swarm delivers high efficiency to particle swarm optimization. Appl Soft Comput 55:371–383

    Article  Google Scholar 

  39. Jiang Y, Hu T, Huang C, Wu X (2007) An improved particle swarm optimization algorithm. Appl Math Comput 193(1):231–239

    MATH  Google Scholar 

  40. Yuguang Z, Bo A, Yong Z (2016) A PSO algorithm for multi-objective hull assembly line balancing using the stratified optimization strategy. Comput Ind Eng 98:53–62

    Article  Google Scholar 

  41. Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MATH  Google Scholar 

  42. Sheri A, Rafique A, Pedrycz W, Jeon M (2015) Contrastive divergence for memristor-based restricted Boltzmann machine. Eng Appl Artif Intell 37:336–342

    Article  Google Scholar 

  43. Cui H, Feng C, Chai Y, Liu R, Liu Y (2014) Effect of hybrid circle reservoir injected with wavelet-neurons on performance of echo state network. Neural Netw 57:141–151

    Article  Google Scholar 

  44. Chua L, Komuro M, Matsumoto T (1986) The double scroll family. IEEE Trans Circuits Syst 33(11):1072–1118

    Article  MATH  Google Scholar 

  45. Duan M (2018) Short-time prediction of traffic flow based on PSO optimized SVM. 2018 international conference on intelligent transportation, big data and smart city (ICITBS). pp 41–45

  46. Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  47. Zhan Z, Zhang J, Li Y, Chung H S (2009) Adaptive particle swarm optimization. IEEE Trans on Fuzzy Syst Man Cybern 39:1362–1381

    Article  Google Scholar 

  48. Jaeger H (2002) Short term memory in echo state networks. In: GMD Report

  49. Deng Z, Zhang Y (2007) Collective behavior of a small-world recurrent neural system with scale-free distribution. IEEE Trans Neural Netw Learn Syst 18(5):1364–1375

    Article  Google Scholar 

  50. Wang H, Yan X (2015) Optimizing the echo state network with a binary particle swarm optimization algorithm. Knowl-Based Syst 86:182–193

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Foundation for Beijing Tianjin Hebei Basic Research Cooperation (No. J210008, H2021202008), the Inner Mongolia Discipline Inspection and Supervision Big Data Laboratory (No. IMDBD202105) and Hebei Province doctoral student innovation ability training funding project (No. CXZZBS2022040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatong Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhou, Y. & Liu, Y. Deep reservoir calculation model and its application in the field of temperature and humidity prediction. Appl Intell 53, 4393–4414 (2023). https://doi.org/10.1007/s10489-022-03685-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03685-z

Keywords

Navigation