Skip to main content
Log in

MinimalGAN: diverse medical image synthesis for data augmentation using minimal training data

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Image synthesis techniques have limited application in the medical field due to unsatisfactory authenticity and precision. Additionally, synthesizing diverse outputs is challenging when the training data are insufficient, as in many medical datasets. In this work, we propose an image-to-image network named the Minimal Generative Adversarial Network (MinimalGAN), to synthesize annotated, accurate, and diverse medical images with minimal training data. The primary concept is to make full use of the internal information of the image and decouple the style from the content by separating them in the self-coding process. After that, the generator is compelled to concentrate on content detail and style separately to synthesize diverse and high-precision images. The proposed MinimalGAN includes two image synthesis techniques; the first is style transfer. We synthesized a stylized retinal fundus dataset. The style transfer deception rate is much higher than that of traditional style transfer methods. The blood vessel segmentation performance increased when only using synthetic data. The other image synthesis technique is target variation. Unlike the traditional translation, rotation, and scaling on the whole image, this approach only performs the above operations on the segmented target being annotated. Experiments demonstrate that segmentation performance improved after utilizing synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhao A, Balakrishnan G, Durand F, Guttag JV, Dalca AV (2019) Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8543–8553. https://doi.org/10.1109/CVPR.2019.00874

  2. Acharya U R, Fujita H, Oh S L, Raghavendra U, Tan J H, Adam M, Gertych A, Hagiwara Y (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Generation Computer Systems 79:952–959. https://doi.org/10.1016/j.future.2017.08.039

    Article  Google Scholar 

  3. Hernandez-Matamoros A, Fujita H, Perez-Meana H (2020) A novel approach to create synthetic biomedical signals using birnn. Inf Sci 541:218–241. https://doi.org/10.1016/j.ins.2020.06.019

    Article  Google Scholar 

  4. Dolinskỳ P, Andras I, Michaeli L, Grimaldi D (2018) Model for generating simple synthetic ecg signals. Acta Electrotechnica et Informatica 18(3):3–8. https://doi.org/10.15546/aeei-2018-0019

    Article  Google Scholar 

  5. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, vol 27, pp 2672–2680

  6. Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,, pp 1125–1134, DOI https://doi.org/10.1109/CVPR.2017.632

  7. Sunho Kim BK, Park H (2021) Synthesis of brain tumor multicontrast mr images for improved data augmentation. Med Phys 48:2185–2198. https://doi.org/10.1002/mp.14701

    Article  Google Scholar 

  8. Ju L, Wang X, Zhao X, Bonnington P, Drummond T, Ge Z (2021) Leveraging regular fundus images for training uwf fundus diagnosis models via adversarial learning and pseudo-labeling. IEEE Trans Med Imaging 40(10):2911–2925. https://doi.org/10.1109/TMI.2021.3056395

    Article  Google Scholar 

  9. Hinton G E, Zemel R (1994) Autoencoders, minimum description length and helmholtz free energy. In: Advances in neural information processing systems, vol 6, pp 3–10

  10. Taesung Park T -C W, Liu M-Y, Zhu J-Y (2019) Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2337–2346, DOI https://doi.org/10.1109/CVPR.2019.00244

  11. Peihao Zhu Y Q, Abdal R, Wonka P (2020) Sean: Image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5104–5113, DOI https://doi.org/10.1109/CVPR42600.2020.00515

  12. Leon A, Gatys A S E, Bethge M (2016) Image style transfer using convolutional neural networks, pp 2414–2423. https://doi.org/10.1109/CVPR.2016.265

  13. Dmitry Ulyanov A V, Lebedev V, Lempitsky VS (2016) Texture networks: Feed-forward synthesis of textures and stylized images. In: International conference on machine learning, p 4

  14. He Zhao S M-S, li H, Cheng l (2018) Synthesizing retinal and neuronal images with generative adversarial nets. Medical Image Analysis 49:14–26. https://doi.org/10.1016/j.media.2018.07.001

    Article  Google Scholar 

  15. Yanghao Li J L, Wang N, Hou X (2017) Demystifying neural style transfer. In: Proceedings of the 26th international joint conference on artificial intelligence, pp 2230–2236, DOI https://doi.org/10.24963/ijcai.2017/310

  16. Tamar Rott Shaham T. D (2019) Michaeli., T.: Singan: Learning a generative model from a single natural image. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 4570–4580, DOI 10.1109/ICCV.2019.00467

  17. Tobias Hinz O W, Fisher M, Wermter S (2021) Improved techniques for training single-image gans. In: Proceedings of the IEEE winter conference on applications of computer vision, pp 1300–1309, DOI https://doi.org/10.1109/WACV48630.2021.00134

  18. Brion E, Léger J, Barragán-Montero A M, Meert N, Lee J A, Macq B (2021) Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam ct. Comput Biol Med 131:104269. https://doi.org/10.1016/j.compbiomed.2021.104269

    Article  Google Scholar 

  19. Lv J, Li G, Tong X, Chen W, Huang J, Wang C, Yang G (2021) Transfer learning enhanced generative adversarial networks for multi-channel mri reconstruction. Comput Biol Med 104504. https://doi.org/10.1016/j.compbiomed.2021.104504

  20. Yurt M, Dar SUH, Erdem A, Erdem E, Oguz KK, Çukur T (2021) Mustgan: Multi-stream generative adversarial networks for mr image synthesis. Med Image Anal 70:101944. https://doi.org/10.1016/j.media.2020.101944

    Article  Google Scholar 

  21. Tuysuzoglu A, Tan J, Eissa K, Kiraly A P, Diallo M, Kamen A (2018) Deep adversarial context-aware landmark detection for ultrasound imaging. In: International conference on medical image computing and computer-assisted intervention, pp 151–158, DOI https://doi.org/10.1007/978-3-030-00937-3_18

  22. Ren J, Hacihaliloglu I, Singer EA, Foran DJ, Qi X (2018) Adversarial domain adaptation for classification of prostate histopathology whole-slide images. In: International conference on medical image computing and computer-assisted intervention, pp 201–209, DOI https://doi.org/10.1007/978-3-030-00934-2_23

  23. Zanjani FG, Zinger S, Bejnordi BE, van der Laak JAWM, de With PH (2018) Stain normalization of histopathology images using generative adversarial networks. In: 2018 IEEE 15Th international symposium on biomedical imaging, pp 573–577, DOI https://doi.org/10.1109/ISBI.2018.8363641

  24. Cheng Chen HC, Dou Q, Heng P-A (2018) Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation. In: International workshop on machine learning in medical imaging, pp 143–151, DOI https://doi.org/10.1007/978-3-030-00919-9_17

  25. Yue Zhang TM, Miao S, Liao R (2018) Task driven generative modeling for unsupervised domain adaptation:application to x-ray image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 599–607, DOI https://doi.org/10.1007/978-3-030-00934-2_67

  26. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D (2018) Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng 65(12):2720–2730. https://doi.org/10.1109/TBME.2018.2814538

    Article  Google Scholar 

  27. Yang H, Sun J, Carass A, Zhao C, Lee J, Xu Z, Prince J (2018) Unpaired brain mr-to-ct synthesis using a structure-constrained cyclegan. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp 174–182, DOI https://doi.org/10.1007/978-3-030-00889-5_20

  28. Jiang J, Hu Y-C, Tyagi N, Zhang P, Rimner A, Mageras GS, Deasy JO, Veeraraghavan H (2018) Tumor-aware, adversarial domain adaptation from ct to mri for lungcancer segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 777–785, DOI https://doi.org/10.1007/978-3-030-00934-2_86

  29. Ben-Cohen A, Klang E, Raskin S P, Soffer S, Ben-Haim S, Konen E, Amitai M M, Greenspan H (2019) Cross-modality synthesis from ct to pet using fcn and gan networksfor improved automated lesion detection. Eng Appl Artif Intell 78:186–194. https://doi.org/10.1016/j.engappai.2018.11.013

    Article  Google Scholar 

  30. Pan Y, Liu M, Lian C, Zhou T, Xia Y, Shen D (2018) Synthesizing missing pet from mri with cycle-consistent generative adversarial networks for alzheimer’s disease diagnosis. In: International conference on medical image computing and computer-assisted intervention, pp 455–463, DOI https://doi.org/10.1007/978-3-030-00931-1_52

  31. Abhishek K, Hamarneh G (2019) Mask2lesion: Mask-constrained adversarial skin lesion imagesynthesis. In: International workshop on simulation and synthesis in medical imaging, pp 71–80, DOI https://doi.org/10.1007/978-3-030-32778-1_8

  32. Jing Y, Yang Y, Feng Z, Ye J, Yu Y, Song M (2019) Neural style transfer: A review. IEEE Transactions on Visualization and Vomputer Graphics 26(11):3365–3385. https://doi.org/10.1109/TVCG.2019.2921336

    Article  Google Scholar 

  33. Dmitry Ulyanov AV, Lebedev V, Lempitsky VS (2016) Texture networks: Feed-forward synthesis of textures and stylizedimages. In: International conference on machine learning, p. 4

  34. Vincent Dumoulin JS, Kudlur M (2017) A learned representation for artistic style. In: International conference on learning representations, pp 9

  35. Huang X, Belongie S (2017) Arbitrary style transfer in real-time with adaptive instancenormalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 1501–1510, DOI https://doi.org/10.1109/ICCV.2017.167

  36. Karras T, Laine S, Aila T (2021) A style-based generator architecture for generative adversarial networks. IEEE pattern analysis and machine intelligence 43(12):4217–4228. https://doi.org/10.1109/TPAMI.2020.2970919

    Article  Google Scholar 

  37. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T (2020) Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8110–8119, DOI https://doi.org/10.1109/CVPR42600.2020.00813

  38. Xun Huang S B, Liu M-Y, Kautz J (2018) Multimodal unsupervised image-to-image translation. In: Proceedings of the european conference on computer vision, pp 172–189

  39. Yunjey Choi JY, Uh Y, Ha J-W (2020) Stargan v2: Diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8188–8197, DOI https://doi.org/10.1109/CVPR42600.2020.00821

  40. Chandran P, Zoss G, Gotardo P, Gross M, Bradley D (2021) Adaptive convolutions for structure-aware style transfer. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7972–7981, DOI https://doi.org/10.1109/CVPR46437.2021.00788

  41. Richardson E, Alaluf Y, Patashnik O, Nitzan Y, Azar Y, Shapiro S, Cohen-Or D (2021) Encoding in style: a stylegan encoder for image-to-image translation. In: Proceedings of the IEEE/CVF international conference on computer vision and pattern recognition, pp 2287–2296, DOI https://doi.org/10.1109/CVPR46437.2021.00232

  42. Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE/CVF International conference on computer vision and pattern recognition, pp 1251–1258, DOI https://doi.org/10.1109/CVPR.2017.195

  43. Liu M-Y, Huang X, Mallya A, Karras T, Aila T, Lehtinen J, Kautz J (2019) Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10551–10560, DOI https://doi.org/10.1109/ICCV.2019.01065

  44. Kuniaki Saito K S, Liu M-Y (2020) Coco-funit: Few-shot unsupervised image translation with a content conditioned style encoder. In: European cnference on computer vision, pp 382–398, DOI https://doi.org/10.1007/978-3-030-58580-8_23

  45. Han Zhang D M, Goodfellow I, Odena A (2019) Self-attention generative adversarial networks. In: International conference on machine learning, pp 7354–7363

  46. Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B (2018) High-resolution image synthesis and semantic manipulation withconditional gans. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition,, pp 8798–8807, DOI https://doi.org/10.1109/CVPR.2018.00917

  47. Justin Johnson A A, Fei-fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: European conference on computer vision, pp 694–711, DOI https://doi.org/10.1007/978-3-319-46475-6_43

  48. Staal J, Abràmoff M D, Niemeijer M, Viergever M A, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging 23(4):501–509. https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  49. Bernal J, Sánchez J, Fernández-Esparrach G, Gil D, Rodríguez C, Vilariño F (2015) Wm-dova maps for accurate polyp highlighting in colonoscopy:validation vs. saliency maps from physicians. Comput Med Imaging Graph 43:99–111. https://doi.org/10.1016/j.compmedimag.2015.02.007

    Article  Google Scholar 

  50. Nima Tajbakhsh S R G, Liang J (2015) Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imaging 35(2):630–644. https://doi.org/10.1109/TMI.2015.2487997

    Article  Google Scholar 

  51. Juan Silva O R X D, Histace A, Granado B (2014) Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int J CARS 9(2):283–293. https://doi.org/10.1007/s11548-013-0926-3

    Article  Google Scholar 

  52. Fan D-P, Ji G-P, Zhou T, Chen G, Fu H, Shen J, Shao L (2020) Pranet: Parallel reverse attention network for polyp segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 263–273, DOI https://doi.org/10.1007/978-3-030-59725-2_26

  53. The International Skin Imaging Collaboration (ISIC) Website. ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection. https://challenge2018.isic-archive.com/

  54. Li Y, Fang C, Yang J, Wang Z, Lu X, Yang M-H (2017) Universal style transfer via feature transforms. In: Advances in neural information processing systems, pp 386–396

  55. Li Y, Liu M-Y, Li X, Yang M-H, Kautz J (2018) A closed-form solution to photorealistic image stylization. In: Proceedings of the european conference on computer vision, pp 453–468

  56. Li X, Liu S, Kautz J, Yang M -H (2019) Learning linear transformations for fast image and video style transfer. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3809–3817, DOI https://doi.org/10.1109/CVPR.2019.00393

  57. An J, Huang S, Song Y, Dou D, Liu W, Luo J (2021) Artflow: Unbiased image style transfer via reversible neural flows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 862–871, DOI https://doi.org/10.1109/CVPR46437.2021.00092

  58. Yoo J, Uh Y, Chun S, Kang B, Ha J -W (2019) Photorealistic style transfer via wavelet transforms. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9036–9045, DOI https://doi.org/10.1109/ICCV.2019.00913

  59. Liu S, Lin T, He D, Li F, Wang M, Li X, Sun Z, Li Q, Ding E (2021) Adaattn: Revisit attention mechanism in arbitrary neural style transfer. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6649–6658, DOI https://doi.org/10.1109/ICCV.2019.00913

  60. Artsiom Sanakoyeu S L, Kotovenko D, Ommer B (2018) A style-aware content loss for real-time hd style transfer. In: Proceedings of the european conference on computer vision, pp 698–714

  61. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations

  62. Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W (2018) Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International conference on learning representations

  63. Fan D-P, Gong C, Cao Y, Ren B, Cheng M-M, Borji A (2018) Enhanced-alignment measure for binary foreground map evaluation. In: International joint conference on artificial intelligence, pp 698–704

  64. Fan D-P, Cheng M-M, Liu Y, Li T, Borji A (2017) Structure-measure: A new way to evaluate foreground maps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 4548–4557, DOI https://doi.org/10.1109/ICCV.2017.487

Download references

Acknowledgments

The research was supported by the Key Laboratory of Spectral Imaging Technology, Xi’an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, the Key laboratory of Biomedical Spectroscopy of Xi’an, the Outstanding Award for Talent Project of the Chinese Academy of Sciences, “From 0 to 1” Original Innovation Project of the Basic Frontier Scientific Research Program of the Chinese Academy of Sciences, and Autonomous Deployment Project of Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Wang or Bingliang Hu.

Additional information

Statements and declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Q. & Hu, B. MinimalGAN: diverse medical image synthesis for data augmentation using minimal training data. Appl Intell 53, 3899–3916 (2023). https://doi.org/10.1007/s10489-022-03609-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03609-x

Keywords

Navigation