Skip to main content
Log in

Label driven latent subspace learning for multi-view multi-label classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In multi-view multi-label learning (MVML), each instance is described by several heterogeneous feature representations and associated with multiple valid labels simultaneously. The key to learn from MVML data lies in how to seek a more discriminative latent subspace to exploit the consensus information across different views. In this paper, we propose a Label-Dependent Multi-view Multi-label method named M2LD, which incorporates the label information into the feature subspace to learn a more discriminative feature subspace for model induction. Specifically, we first construct a multi-view shared latent subspace across diverse views by matrix decomposition, and then the consistency relationship between labels and features is embedded to make the learned subspace label-dependent. In this way, we can preserve the local geometric structure while exploiting the consensus information of multi-view data, which leads the learned feature subspace be more discriminative. Finally, we induce the multi-view multi-label classifier by directly mapping the discriminative feature subspace to the label space. Extensive experiments on six real-world datasets indicate that our proposed M2LD can achieve superior or comparable performance against state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory, pp 92–100

  2. Boutell M, Luo J, Shen X, Brown C (2004) Learning multi-label scene classification. Pattern Recogn 37(9):1757–1771

    Article  Google Scholar 

  3. Cao X, Zhang C, Fu H, Liu S, Zhang H (2015) Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 586–594

  4. Chen G, Ye D, Xing Z, Chen J, Cambria E (2017) Ensemble application of convolutional and recurrent neural networks for multi-label text categorization. In: International joint conference on neural networks, pp 2377–2383

  5. Chen M, Huang L, Wang C, Huang D (2020) Multi-view clustering in latent embedding space. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 3513– 3520

  6. Duygulu P, Barnard K, de Freitas J, Forsyth D (2002) Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: European conference on computer vision, pp 97–112

  7. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  8. Everingham M, Eslami S, Van Gool L, Williams C, Winn J, Zisserman A (2015) The Pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136

    Article  Google Scholar 

  9. Gao H, Nie F, Li X, Huang H (2015) Multi-view subspace clustering. In: Proceedings of the IEEE international conference on computer vision, pp 4238–4246

  10. Gibaja E L, Ventura S (2015) A tutorial on multi-label learning. ACM Comput Surv 47 (3):1–38

    Article  Google Scholar 

  11. Grubinger M, Clough P, Müller H, Deselaers T (2006) The iapr tc-12 benchmark: a new evaluation resource for visual information systems. In: International workshop ontoimage, vol 2, pp 13–23

  12. Huiskes M, Lew M (2008) The mir flickr retrieval evaluation. In: Proceedings of The 1st ACM international conference on multimedia information retrieval, pp 39–43

  13. Li X, Chen S (2021) A concise yet effective model for non-aligned incomplete multi-view and missing multi-label learning. IEEE Trans Pattern Anal Mach Intell 1–20

  14. Li X, Guo Y (2013) Active learning with multi-label svm classification. In: International joint conference on artificial intelligence, pp 1479–1485

  15. Li Z, Yang Y, Liu J, Zhou X, Lu H (2012) Unsupervised feature selection using nonnegative spectral analysis. In: Proceedings of the AAAI conference on artificial intelligence, vol 26, pp 1026–1032

  16. Li Y, Nie F, Huang H, Huang J (2015) Large-scale multi-view spectral clustering via bipartite graph. In: AAAI Conference on artificial intelligence, pp 2750–2756

  17. Liu M, Luo Y, Tao D, Xu C, Wen Y (2015) Low-rank multi-view learning in matrix completion for multi-label image classification. In: AAAI Conference on artificial intelligence, pp 2778–2784

  18. Liu W, He J, Chang S (2010) Large graph construction for scalable semi-supervised learning. In: International conference on machine learning

  19. Luaces O, Díez J, Barranquero J, del Coz J, Bahamonde A (2012) Binary relevance efficacy for multilabel classification. Progr Artif Intell 1(4):303–313

    Article  Google Scholar 

  20. Moyano J, Gibaja E, Cios K, Ventura S (2018) Review of ensembles of multi-label classifiers: models, experimental study and prospects. Inf Fusion 44:33–45

    Article  Google Scholar 

  21. Nie F, Zhu W, Li X (2017) Unsupervised large graph embedding. In: AAAI Conference on artificial intelligence

  22. Rakotomamonjy A, Bach F, Canu S, Grandvalet Y (2008) Simplemkl. J Mach Learn Res 9:2491–2521

    MATH  Google Scholar 

  23. Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333–359

    Article  Google Scholar 

  24. Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, Džeroski S (2010) Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinform 11(1):1–14

    Article  MATH  Google Scholar 

  25. Smith R (1968) Matrix equation xa+bx=c. SIAM J Appl Math 16(1):198–201

    Article  MATH  Google Scholar 

  26. Szymański P, Kajdanowicz T, Kersting K (2016) How is a data-driven approach better than random choice in label space division for multi-label classification? Entropy 18(8):282

    Article  Google Scholar 

  27. Tan Q, Yu G, Domeniconi C, Wang J, Zhang Z (2018) Incomplete multi-view weak-label learning. In: International joint conference on artificial intelligence, pp 2703–2709

  28. Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Warehous Min 3(3):1–13

    Article  Google Scholar 

  29. Tsoumakas G, Katakis I, Vlahavas I (2010) Random k-labelsets for multilabel classification. IEEE Trans Knowl Data Eng 23(7):1079–1089

    Article  Google Scholar 

  30. Von Ahn L, Dabbish L (2004) Labeling images with a computer game. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 319–326

  31. Wang M, Fu W, Hao S, Tao D, Wu X (2016) Scalable semi-supervised learning by efficient anchor graph regularization. IEEE Trans Knowl Data Eng 28(7):1864–1877

    Article  Google Scholar 

  32. Wang M, Fu W, Hao S, Liu H, Wu X (2017) Learning on big graph: label inference and regularization with anchor hierarchy. IEEE Trans Knowl Data Eng 29(5):1101–1114

    Article  Google Scholar 

  33. Wang H, Yang Y, Liu B (2019a) Gmc: graph-based multi-view clustering. IEEE Trans Knowl Data Eng 32(6):1116–1129

    Article  Google Scholar 

  34. Wang H, Yang Y, Liu B, Fujita H (2019b) A study of graph-based system for multi-view clustering. Knowl-Based Syst 163:1009–1019

    Article  Google Scholar 

  35. Wu X, Chen Q, Hu Y, Wang D, Chang X, Wang X, Zhang M (2019) Multi-view multi-label learning with view-specific information extraction. In: International joint conference on artificial intelligence, pp 3884–3890

  36. Wu J, Wu X, Chen Q, Hu Y, Zhang M (2020) Feature-induced manifold disambiguation for multi-view partial multi-label learning. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 557–565

  37. Xiao Q, Dai J, Luo J, Fujita H (2019) Multi-view manifold regularized learning-based method for prioritizing candidate disease mirnas. Knowl-Based Syst 175:118–129

    Article  Google Scholar 

  38. Zhang M, Zhou Z (2007) Ml-knn: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038–2048

    Article  MATH  Google Scholar 

  39. Zhang C, Fu H, Hu Q, Cao X, Xie Y, Tao D, Xu D (2018a) Generalized latent multi-view subspace clustering. IEEE Trans Pattern Anal Mach Intell 42(1):86–99

    Article  Google Scholar 

  40. Zhang C, Yu Z, Hu Q, Zhu P, Liu X, Wang X (2018b) Latent semantic aware multi-view multi-label classification. In: AAAI Conference on artificial intelligence, pp 4414–4421

  41. Zhang C, Fu H, Wang J, Li W, Cao X, Hu Q (2020a) Tensorized multi-view subspace representation learning. Int J Comput Vis 128(8):2344–2361

    Article  MATH  Google Scholar 

  42. Zhang Y, Wu J, Cai Z, Philip S (2020b) Multi-view multi-label learning with sparse feature selection for image annotation. IEEE Trans Multimed 22(11):2844–2857

    Article  Google Scholar 

  43. Zhang M, Fang J, Wang Y (2021) Bilabel-specific features for multi-label classification. ACM Trans Knowl Discov Data (TKDD) 16(1):1–23

    Google Scholar 

  44. Zhao J, Xie X, Xu X, Sun S (2017) Multi-view learning overview: recent progress and new challenges. Inf Fusion 38:43–54

    Article  Google Scholar 

  45. Zhu X, Li X, Zhang S (2015) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461

    Article  Google Scholar 

  46. Zhu X, Zhang S, He W, Hu R, Lei C, Zhu P (2018) One-step multi-view spectral clustering. IEEE Trans Knowl Data Eng 31(10):2022–2034

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported in part by the National Natural Science Foundation of China(Nos.61872032, 61871028), in part by the Beijing Natural Science Foundation (No.4202058),in part by the National Key Research and Development Project(No.2018AAA0100300).in part by the Joint Key of Beijing Natural Science Foundation and Municipal Education Commission(No.KZ201951160050) and in part by the Beijing Advanced Talents Great Wall Scholar Training Program(No.CITTCD20190313)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiazheng Yuan or Songhe Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yuan, J., Lyu, G. et al. Label driven latent subspace learning for multi-view multi-label classification. Appl Intell 53, 3850–3863 (2023). https://doi.org/10.1007/s10489-022-03600-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03600-6

Keywords

Navigation