Skip to main content
Log in

Object detection based on few-shot learning via instance-level feature correlation and aggregation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The detection of novel foregrounds only utilizing scarce annotated images, namely few-shot object detection, makes a detector no longer dependent on large-scale instantiated sets. The realistic challenge might lie in establishing the correlation of few instances and balancing the sensitivity between base and novel categories. In this paper, we propose a few-shot detector using instance-level feature correlation based on an interactive self-attention module to deeply mine the discriminating representations from scarce novel instances. Besides, using an extended soft threshold shrinkage, a feature aggregation procedure is introduced to eliminate redundant information while enhancing the representation sensitivity between base and novel categories. In the training phase, an orthogonal loss is applied to further enhance the feature distinguishability of inter-categories. Finally, we evaluate related competitive detectors on both benchmarks PASCAL-VOC07/12 and MS-COCO, with the results verifying the superior detection precision on AP, mAP and AR measurements of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vinyals O, Blundell C, Lillicrap T, et al (2016) Matching networks for one shot learning[J]. Adv Neural Inf Process Syst 29:3630–3638

    Google Scholar 

  2. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Conference on Machine Learning. PMLR, pp 1126–1135

  3. Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning[J]. arXiv:1703.05175

  4. Lee K, Maji S, Ravichandran A, et al (2019) Meta-learning with differentiable convex optimization[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10657–10665

  5. Kim G, Jung HG, Lee SW (2021) Spatial Reasoning for Few-Shot Object Detection[J]. Pattern Recogn:108118

  6. Ravi S, Larochelle H (2016) Optimization as a model for few-shot learning[J]

  7. Sung F, Yang Y, Zhang l, et al (2018) Learning to compare: Relation network for few-shot learning[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1199–1208

  8. Bertinetto L, Henriques JF, Torr PHS et al (2018) Meta-learning with differentiable closed-form solvers[J]. arXiv:1805.08136

  9. Gidaris S, Komodakis N (2018) Dynamic few-shot visual learning without forgetting[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4367–4375

  10. Chen H, Wang Y, Wang G et al (2018) Lstd: A low-shot transfer detector for object detection[C]. Proc AAAI Conf Artif Intell 32(1)

  11. Karlinsky L, Shtok J, Harary S et al (2019) Repmet: Representative-based metric learning for classification and few-shot object detection[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5197–5206

  12. Kang B, Liu Z, Wang X et al (2019) Few-shot object detection via feature reweighting[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 8420–8429

  13. Fan Q, Zhuo W, Tang CK et al (2020) Few-shot object detection with attention-RPN and multi-relation detector[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 4013–4022

  14. Li Y, Feng W, Lyu S, et al (2020) MM-FSOD: Meta and metric integrated few-shot object detection[J]. arXiv:2012.15159

  15. Yan X, Chen Z, Xu A et al (2019) Meta r-cnn: Towards general solver for instance-level low-shot learning[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9577–9586

  16. Xiao Y, Marlet R (2020) Few-shot object detection and viewpoint estimation for objects in the wild[C]. European Conference on Computer Vision. Springer, Cham, pp 192–210

  17. Wang X, Huang TE, Darrell T, et al (2020) Frustratingly simple few-shot object detection[J]. arXiv:2003.06957

  18. Wu J, Liu S, Huang D, et al (2020) Multi-scale positive sample refinement for few-shot object detection[C]. European Conference on Computer Vision. Springer, Cham, pp 456–472

  19. Yang Z, Wang Y, Chen X et al (2020) Context-transformer: tackling object confusion for few-shot detection[C]. Proc AAAI Conf Artif Intell 34(07):12653–12660

    Google Scholar 

  20. Everingham M, Eslami SMA, Van Gool L et al (2015) The pascal visual object classes challenge: A retrospective[J]. Int J Comput Vis 111(1):98–136

    Article  Google Scholar 

  21. Liu L, Ma B, Zhang Y et al (2020) AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection[J]. arXiv:2011.14667

  22. Jiao L, Zhang F, Liu F, et al (2019) A survey of deep learning-based object detection[J]. IEEE access 7:128837–128868

    Article  Google Scholar 

  23. Isogawa K, Ida T, Shiodera T, et al (2017) Deep shrinkage convolutional neural network for adaptive noise reduction[J]. IEEE Signal Process Lett 25(2):224–228

    Article  Google Scholar 

  24. Everingham M, Van Gool L, Williams CKI, et al (2010) The pascal visual object classes (voc) challenge[J]. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  25. Ren S, He K, Girshick R, et al (2015) Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Adv Neural Inf Process Syst 28:91–99

    Google Scholar 

  26. Bendre N, Marín HT, Najafirad P (2020) Learning from few samples: A survey[J]. arXiv:2007.15484

  27. Law H, Teng Y, Russakovsky O, et al (2019) Cornernet-lite: Efficient keypoint based object detection[J]. arXiv:1904.08900

  28. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  29. Lin TY, Maire M, Belongie S, et al (2014) Microsoft coco: Common objects in context[C]. European conference on computer vision. Springer, Cham, pp 740–755

  30. Liu W, Anguelov D, Erhan D, et al (2016) Ssd: Single shot multibox detector[C]. European conference on computer vision. Springer, Cham, pp 21–37

  31. Redmon J, Divvala S, Girshick R, et al (2016) You only look once: Unified, real-time object detection[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788

  32. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7263–7271

  33. Wang Y, Yao Q, Kwok JT, et al (2020) Generalizing from a few examples: A survey on few-shot learning[J]. ACM Comput Surv (CSUR) 53(3):1–34

    Article  Google Scholar 

  34. Redmon J, Farhadi A (2018) Yolov3: An incremental improvement[J]. arXiv:1804.02767

  35. Ranasinghe K, Naseer M, Hayat M, et al (2021) Orthogonal Projection Loss[J]. arXiv:2103.14021

  36. Deng J, Dong W, Socher R, et al (2009) Imagenet: A large-scale hierarchical image database[C]. 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255

  37. Duan K, Bai S, Xie L et al (2019) Centernet: Object detection with keypoint triplets[J]. arXiv:1904.08189

  38. Law H, Deng J (2018) Cornernet: Detecting objects as paired keypoints[C]. Proceedings of the European conference on computer vision (ECCV), pp 734–750

  39. Gidaris S, Bursuc A, Komodakis n et al (2019) Boosting few-shot visual learning with self-supervision[C]. Proceedings of the IEEE/CVF international conference on computer vision, pp 8059–8068

  40. Wang YX, Ramanan D, Hebert M (2019) Meta-learning to detect rare objects[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9925–9934

  41. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks[C]. International Conference on Machine Learning. PMLR, pp 1126–1135

  42. Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object categories[J]. IEEE Trans Pattern Anal Mach Intell 28(4):594–611

    Article  Google Scholar 

  43. Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-level concept learning through probabilistic program induction[J]. Science 350(6266):1332–1338

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao M, Zhong S, Fu X, et al (2019) Deep residual shrinkage networks for fault diagnosis[J]. IEEE Trans Industrial Inf 16(7):4681–4690

    Article  Google Scholar 

  45. Chen X, Jiang M, Zhao Q (2020) Leveraging Bottom-Up and Top-Down Attention for Few-Shot Object Detection[J]. arXiv:2007.121042007.12104

  46. Wang X, Girshick R, Gupta A et al (2018) Non-local neural networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7794–7803

  47. Zhou X, Zhuo J, Krahenbuhl P (2019) Bottom-up object detection by grouping extreme and center points[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 850–859

  48. Fu J, Liu J, Tian H, et al (2019) Dual attention network for scene segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 3146–3154

  49. Chen TI, Liu YC, Su HT, et al (2021) Should I Look at the Head or the Tail? Dual-awareness Attention for Few-Shot Object Detection[J]. arXiv:2102.12152

  50. Kim G, Jung HG, Lee SW (2020) Few-shot object detection via knowledge transfer[C]. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 3564– 3569

  51. Li B, Yang B, Liu C et al (2021) Beyond Max-Margin: Class Margin Equilibrium for Few-shot Object Detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7363–7372

  52. Hu H, Bai S, Li A et al (2021) Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10185–10194

  53. Xu H, Wang X, Shao F, et al (2021) Few-Shot Object detection via sample Processing[J]. IEEE Access 9:29207–29221

    Article  Google Scholar 

  54. Zhu C, Chen F, Ahmed U et al (2021) Semantic relation reasoning for shot-stable few-shot object detection[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8782–8791

  55. Lee H, Lee M, Kwak N (2021) Few-Shot Object Detection by Attending to Per-Sample-Prototype. arXiv:2109.07734

  56. Liu W et al (2021) Dynamic Relevance Learning for Few-Shot Object Detection. arXiv:2108.02235

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (62062048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Ning, H. & Liu, H. Object detection based on few-shot learning via instance-level feature correlation and aggregation. Appl Intell 53, 351–368 (2023). https://doi.org/10.1007/s10489-022-03399-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03399-2

Keywords

Navigation