Skip to main content
Log in

Dense depth estimation from multiple 360-degree images using virtual depth

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we propose a dense depth estimation pipeline for multiview 360 images. The proposed pipeline leverages a spherical camera model that compensates for radial distortion in 360 images. The key contribution of this paper is the extension of a spherical camera model to multiview by introducing a translation scaling scheme. Moreover, we propose an effective dense depth estimation method by setting virtual depth and minimizing photonic reprojection error. We validate the performance of the proposed pipeline using the images of natural scenes as well as the synthesized dataset for quantitive evaluation. The experimental results verify that the proposed pipeline improves estimation accuracy compared to the current state-of-art dense depth estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. da Silveira TLT, Jung C R (2019) Dense 3D scene reconstruction from multiple spherical images for 3-Dof+ vr applications. In: IEEE conference virtual reality and 3d user interfaces (vr), pp 9–18

  2. Kim H, Hilton A (2013) 3D scene reconstruction from multiple spherical stereo pairs. Int J Comput Vis 104:94–116

    Article  MathSciNet  Google Scholar 

  3. Ma C, Shi L, Huang H, Yan M (2015) 3D reconstruction from full-view fisheye camera. arXiv:1506.06273

  4. Pathak S, Moro A, Fujii H, Yamashita A, Asama H (2016) 3D reconstruction of structures using spherical cameras with small motion. In: IEEE International Conference on Control, Automation and System (ICCAS), pp 117–122

  5. Pathak S, Moro A, Yamashita A, Asama H (2016) Dense 3D reconstruction from two spherical images via optical flow-based equirectangular epipolar rectification. In: IEEE int. conf. on imaging syst. and technol. (IST). IEEE, pp 140–145

  6. Schönbein M, Geiger A (2014) Omnidirectional 3D reconstruction in augmented manhattan worlds. In: IEEE int. conf. on intell. robot. and syst. (IROS), pp 716–723

  7. Yang S-T, Wang F-E, Peng C-H, Wonka P, Sun M, Chu H-K (2019) DuLa-Net: a dual-projection network for estimating room layouts from a single rgb panorama. In: IEEE conf. on comput. vis. and pattern recognit. (cvpr), pp 3363–3372

  8. Fernandez-Labrador C, Facil J M, Perez-Yus A, Demonceaux C, Civera J, Guerrero J J (2020) Corners for layout: end-to-end layout recovery from 360 images. IEEE Robot Automat Lett 5:1255–1262

    Article  Google Scholar 

  9. Tian F, Gao Y, Fang Z, Fang Y, Gu J, Fujita H, Hwang J-N (2021) Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans on Circ and Syst for Video Tech. 1–1

  10. Lie W-N, Hsieh C-Y, Lin G-S (2017) Key-frame-based background sprite generation for hole filling in depth image-based rendering. IEEE Trans Multimed 20:1075–1087

    Article  Google Scholar 

  11. Jiang X, Le Pendu M, Guillemot C (2017) Light field compression using depth image based view synthesis. In: IEEE int. conf. on multimedia & expo workshops. (ICMEW), pp 19–24

  12. Yang N, Stumberg L , Wang R, Cremers D (2020) D3VO: Deep depth, deep pose and deep uncertainty for monocular visual odometry. In: IEEE conf. on comput. vis. and pattern recognit. (CVPR), pp 1281–1292

  13. Zhan H, Weerasekera C S, Bian J-W, Reid I (2020) Visual odometry revisited: What should be learnt?. In: IEEE int. conf. on robot. and automat. (ICRA), pp 4203–4210

  14. Xue F, Wang X, Li S, Wang Q, Wang J, Zha H (2019) Beyond tracking: Selecting memory and refining poses for deep visual odometry. In: IEEE conf. on comput. vis. and pattern recognit. (CVPR), pp 8575–8583

  15. Carrio A, Vemprala S, Ripoll A, Saripalli S, Campoy P (2018) Drone detection using depth maps. In: IEEE int. conf. on intell. robot. and syst. (IROS), pp 1034–1037

  16. Kart U, Lukezic A, Kristan M, Kamarainen J-K, Matas J (2019) Object tracking by reconstruction with view-specific discriminative correlation filters. In: IEEE conf. on comput. vis. and pattern recognit. (cvpr), pp 1339–1348

  17. Hirschmuller H (2007) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30:328–341

    Article  Google Scholar 

  18. Chen Y-S, Hung Y-P, Fuh C-S (2001) Fast block matching algorithm based on the winner-update strategy. IEEE Trans Image Process 10:1212–1222

    Article  Google Scholar 

  19. Wang Q, Shi S, Zheng S, Zhao K, Chu X (2020) FADNet: A fast and accurate network for disparity estimation. In: IEEE int. conf. on robot. and automat. (ICRA). IEEE, pp 101–107

  20. Gao Q, Zhou Y, Li G, Tong T (2020) Compact StereoNet: stereo disparity estimation via knowledge distillation and compact feature extractor. IEEE Access 8:192141–192154

    Article  Google Scholar 

  21. Geyer C, Daniilidis K (2000) A unifying theory for central panoramic systems and practical implications. In: Eur. Conf. on Comput. Vis. (ECCV), pp 445–461

  22. Ying X, Hu Z (2004) Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model. In: Eur. Conf. on Comput. Vis. (ECCV), pp 442–455

  23. Courbon J, Mezouar Y, Eckt L, Martinet P (2007) A generic fisheye camera model for robotic applications. In: IEEE int. conf. on intell. robot. and syst. (IROS), pp 1683–1688

  24. Li S (2008) Binocular spherical stereo. IEEE Trans Intell Transp Syst 9:589–600

    Article  Google Scholar 

  25. Pagani A, Stricker D (2011) Structure from motion using full spherical panoramic cameras. In: IEEE int. conf. on comput. vis. (iccv) workshops, pp 375–382

  26. Im S, Ha H, Rameau F, Jeon H-G, Choe G, Kweon I S (2016) All-around depth from small motion with a spherical panoramic camera. In: Eur. Conf. on Comput. Vis., pp 156–172

  27. Weinzaepfel P, Revaud J, Harchaoui Z, Schmid C (2013) DeepFlow: Large displacement optical flow with deep matching. In: IEEE int. conf. on comput. vis. (ICCV), pp 1385–1392

  28. Zhao Q, Feng W, Wan L, Zhang J (2015) SPHORB: a fast and robust binary feature on the sphere. Int J Compt Vis 113:143–159

    Article  MathSciNet  Google Scholar 

  29. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: IEEE int. conf. on comput. vis. (ICCV), pp 2564–2571

  30. Arican Z, Frossard P (2007) Dense disparity estimation from omnidirectional images. In: IEEE conf. on adv. video and signal based surveillance (avss), pp 399–404

  31. Collins R T (1996) A space-sweep approach to true multi-image matching. In: IEEE conf. on comput. vis. and pattern recognit. (CVPR), pp 358–363

  32. Chang J-R, Chen Y-S (2018) Pyramid stereo matching network. In: IEEE conf. on comput. vis. and pattern recognit. (cvpr), pp 5410–5418

  33. Kendall A, Martirosyan H, Dasgupta S, Henry P, Kennedy R, Bachrach A, Bry A (2017) End-to-end learning of geometry and context for deep stereo regression. In: IEEE int. conf. on comput. vis. (iccv), pp 66–75

  34. Zhang F, Prisacariu V, Yang R, Torr P HS (2019) GA-Net: Guided aggregation net for end-to-end stereo matching. In: IEEE conf. on comput. vis. and pattern recognit. (cvpr), pp 185–194

  35. Wang N-H, Solarte B, Tsai Y-H, Chiu W-C, Sun M (2020) 360SD-Net: 360 stereo depth estimation with learnable cost volume. In: IEEE int. conf. on robot. and automat. (icra), pp 582–588

  36. Zioulis N, Karakottas A, Zarpalas D, Alvarez F, Daras P (2019) Spherical view synthesis for self-supervised 360 depth estimation. In: IEEE int. conf. on 3d vis. (3dv), pp 690–699

  37. Wang F-E, Yeh Y-H, Sun M, Chiu W-C, Tsai Y-H (2020) BiFuse: Monocular 360 depth estimation via bi-projection fusion. In: IEEE conf. on comput. vis. and pattern recognit. (cvpr), pp 462–471

  38. Jiang H, Sheng Z, Zhu S, Dong Z, Huang R (2021) UniFuse: Unidirectional fusion for 360 panorama depth estimation. IEEE Robot Automat Lett 6:1519–1526

    Article  Google Scholar 

  39. Guan H, Smith William AP (2016) Structure-from-motion in spherical video using the Von Mises-Fisher distribution. IEEE Trans Image Process 26(2):711–723

    Article  MathSciNet  Google Scholar 

  40. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press

  41. Hartley R I (1997) In defense of the eight-point algorithm. IEEE Trans Pattern Anal Mach Intell 19:580–593

    Article  Google Scholar 

  42. Silveira T L T d, Jung C R (2019) Perturbation analysis of the 8-point algorithm: A case study for wide fov cameras. In: IEEE conf. on comput. vis. and pattern recognit. (cvpr), pp 11757–11766

  43. Li J, Wang X, Li S (2018) Spherical-model-based slam on full-view images for indoor environments. Appl Sci 8:2268

    Article  Google Scholar 

  44. (2019). Bfmatcher: OpenCV. https://docs.opencv.org/3.4/d3/da1/classcv_1_1BFMatcher.html#details

  45. Fischler M A, Bolles R C (1981) Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24:381–395

    Article  MathSciNet  Google Scholar 

  46. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: IEEE int. conf. on comput. vis. (iccv), pp 839–846

  47. Barron J T, Poole B (2016) The fast bilateral solver. In: Eur. Conf. on Comput. Vis. (ECCV), pp 617–632

  48. Jeong J, Jang D, Son J, Ryu E-S (2018) 3DoF+ 360 video location-based asymmetric down-sampling for view synthesis to immersive VR video streaming. Sensors 18:3148

    Article  Google Scholar 

  49. Zhang Z, Rebecq H, Forster C, Scaramuzza D (2016) Benefit of large field-of-view cameras for visual odometry. In: IEEE int. conf. on robot. and automat. (icra), pp 801–808

  50. Zhou Q-Y, Park J, Koltun V (2018) Open3D: A modern library for 3D data processing. arXiv:1801.09847

  51. Huang T, Yang GJTGY, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech Signal Process 27:13–18

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2020R1F1A1075428) and Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2020-0-00994, Development of autonomous VR and AR content generation technology reflecting usage environment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeejin Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Kim, K. & Lee, Y. Dense depth estimation from multiple 360-degree images using virtual depth. Appl Intell 52, 14507–14517 (2022). https://doi.org/10.1007/s10489-022-03391-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03391-w

Keywords

Navigation