Abstract
Video Super-Resolution (VSR) aims at producing a high-resolution video from its corresponding low-resolution input frames. In VSR, the key to generating high-quality output is to exploit the spatial similarity of temporal frames. Most VSR methods achieve this by super-resolving a single reference frame with the aid of multiple frames in a temporal window. For this goal, some alignment methods have been proposed to compensate for the motion between adjacent frames. However, these methods lack more upper-level and unified guidance to progressively align neighboring frames, which often leads to poor results when encountering large motions. In this paper, we propose a unified Iterative Alignment Algorithm (IAA) for more accurate frame alignment in VSR. In IAA, each adjacent frame only needs to be aligned to its nearest neighbor, which greatly eases the alignment problem for all kinds of motions. To show the effectiveness of our method, we apply IAA to red the Enhanced Deformable Video super-Resolution (EDVR) network and obtain a new network called IAA-VSR. Extensive experiments show that our IAA-VSR consistently improves the performance of EDVR on benchmark datasets.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kim J, Lee JK, Lee KM (2016) Deeply-recursive convolutional network for image super-resolution. In: CVPR. IEEE Computer Society, pp 1637–1645
Lai W-S, Huang J-B, Ahuja N, Yang M-H (2017) Deep laplacian pyramid networks for fast and accurate super-resolution. In: CVPR. IEEE Computer Society, pp 5835–5843
Tai Y, Yang J, Liu X (2017) Image super-resolution via deep recursive residual network. In: CVPR. IEEE Computer Society, pp 2790–2798
Haris M, Shakhnarovich G, Ukita N (2018) Deep back-projection networks for super-resolution. In: CVPR. IEEE Computer Society, pp 1664–1673
Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y (2018) Image super-resolution using very deep residual channel attention networks. In: ECCV (7). Lecture Notes in Computer Science, vol 11211. Springer, pp 294–310
Caballero J, Ledig C, Aitken AP, Acosta A, Totz J, Wang Z, Shi W (2017) Real-time video super-resolution with spatio-temporal networks and motion compensation. In: CVPR. IEEE Computer Society, pp 2848–2857
Kappeler A, Yoo S, Dai Q, Katsaggelos AK (2016) Video super-resolution with convolutional neural networks. IEEE Trans Comput Imaging 2(2):109–122
Liu D, Wang Z, Fan Y, Liu X, Wang Z, Chang S, Huang TS (2017) Robust video super-resolution with learned temporal dynamics. In: ICCV. IEEE Computer Society, pp 2526– 2534
Xue T, Chen B, Wu J, Wei D, Freeman WT (2019) Video enhancement with task-oriented flow. Int J Comput Vis 127(8):1106–1125
Jo Y, Oh SW, Kang J, Kim SJ (2018) Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: CVPR. IEEE Computer Society, pp 3224– 3232
Wang X, Chan KCK, Yu K, Dong C, Loy CC (2019) EDVR: video restoration with enhanced deformable convolutional networks. In: CVPR workshops. Computer Vision Foundation / IEEE, pp 1954–1963
Zhu X, Hu H, Lin S, Dai J (2019) Deformable convnets V2: more deformable, better results. In: CVPR. Computer Vision Foundation / IEEE, pp 9308–9316
Tian Y, Zhang Y, Fu Y, Xu C (2020) TDAN: temporally-deformable alignment network for video super-resolution. In: CVPR. IEEE, pp 3357–3366
Nah S, Timofte R, Baik S, Hong S, Moon G, Son S, Lee KM, et al. (2019) NTIRE 2019 challenge on video deblurring: Methods and results. In: CVPR workshops. Computer Vision Foundation / IEEE, pp 1974–1984
Nah S, Timofte R, Gu S, Baik S, Hong S, Moon G, Son S, Lee KM et al (2019) NTIRE 2019 challenge on video super-resolution: Methods and results. In: CVPR workshops. Computer Vision Foundation / IEEE, pp 1985–1995
Nah S, Baik S, Hong S, Moon G, Son S, Timofte R, Lee KM (2019) NTIRE 2019 challenge on video deblurring and super-resolution: Dataset and study. In: CVPR workshops. Computer Vision Foundation / IEEE, pp 1996–2005
Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appl 22(2):56–65
Glasner D, Bagon S, Irani M (2009) Super-resolution from a single image. In: ICCV. IEEE Computer Society, pp 349–356
Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process. 19(11):2861–2873
Freedman G, Fattal R (2011) Image and video upscaling from local self-examples. ACM Trans Graph 30(2):12:1–12:11
Timofte R, Smet VD, Gool LV (2013) Anchored neighborhood regression for fast example-based super-resolution. In: ICCV. IEEE Computer Society, pp 1920–1927
Timofte R, Smet VD, Gool LV (2014) A+: adjusted anchored neighborhood regression for fast super-resolution. In: ACCV (4). Lecture Notes in Computer Science, vol 9006. Springer, pp 111–126
Schulter S, Leistner C, Bischof H (2015) Fast and accurate image upscaling with super-resolution forests. In: CVPR. IEEE Computer Society, pp 3791–3799
Yang J, Wang Z, Lin Z, Cohen S, Huang TS (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process 21(8):3467–3478
Pérez-Pellitero E, Salvador J, Hidalgo JR, Rosenhahn B (2016) Psyco: Manifold span reduction for super resolution. In: CVPR. IEEE Computer Society, pp 1837–1845
Kim J, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: CVPR. IEEE Computer Society, pp 1646–1654
Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken AP, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR. IEEE Computer Society, pp 105–114
Lim B, Son S, Kim H, Nah S, Lee KM (2017) Enhanced deep residual networks for single image super-resolution. In: CVPR workshops. IEEE Computer Society, pp 1132–1140
Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual dense network for image super-resolution. In: CVPR. IEEE Computer Society, pp 2472–2481
Liu J, Zhang W, Tang Y, Tang J, Wu G (2020) Residual feature aggregation network for image super-resolution. In: CVPR. IEEE, pp 2356–2365
Dai T, Cai J, Zhang Y, Xia S-T, Zhang L (2019) Second-order attention network for single image super-resolution. In: CVPR. Computer Vision Foundation / IEEE, pp 11065–11074
Guo Y, Chen J, Wang J, Chen Q, Cao J, Deng Z, Xu Y, Tan M (2020) Closed-loop matters: Dual regression networks for single image super-resolution. In: CVPR. IEEE, pp 5406–5415
Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: ECCV (4). Lecture Notes in Computer Science, vol 8692. Springer, pp 184–199
Shi W, Caballero J, Huszar F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR. IEEE Computer Society, pp 1874–1883
Timofte R, Agustsson E, Gool LV, Yang M-H, et al. (2017) NTIRE 2017 challenge on single image super-resolution: Methods and results. In: CVPR workshops. IEEE Computer Society, pp 1110–1121
Kim SY, Lim J, Na T, Kim M (2018) 3dsrnet: Video super-resolution using 3d convolutional neural networks. CoRR abs/1812.09079
Yi P, Wang Z, Jiang K, Jiang J, Ma J (2019) Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations. In: ICCV. IEEE, pp 3106–3115
Huang Y, Wang W, Wang L (2015) Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: NIPS, pp 235–243
Isobe T, Jia X, Gu S, Li S, Wang S, Tian Q (2020) Video super-resolution with recurrent structure-detail network. In: ECCV (12). Lecture Notes in Computer Science, vol 12357. Springer, pp 645–660
Li W, Tao X, Guo T, Qi L, Lu J, Jia J (2020) Mucan: Multi-correspondence aggregation network for video super-resolution. In: ECCV (10). Lecture Notes in Computer Science, vol 12355. Springer, pp 335–351
Caballero J, Ledig C, Aitken AP, Acosta A, Totz J, Wang Z, Shi W (2017) Real-time video super-resolution with spatio-temporal networks and motion compensation. In: CVPR. IEEE Computer Society, pp 2848–2857
Tao X, Gao H, Liao R, Wang J, Jia J (2017) Detail-revealing deep video super-resolution. In: ICCV. IEEE Computer Society, pp 4482–4490
Haris M, Shakhnarovich G, Ukita N (2019) Recurrent back-projection network for video super-resolution. In: CVPR. Computer Vision Foundation / IEEE, pp 3897–3906
Chan KCK, Wang X, Yu K, Dong C, Loy CC (2020) Understanding deformable alignment in video super-resolution. CoRR abs/2009.07265
Isobe T, Li S, Jia X, Yuan S, Slabaugh GG, Xu C, Li Y-L, Wang S, Tian Q (2020) Video super-resolution with temporal group attention. In: CVPR. IEEE, pp 8005–8014
Liu C, Sun D (2014) On bayesian adaptive video super resolution. IEEE Trans Pattern Anal Mach Intell 36(2):346–360
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
Yi P, Wang Z, Jiang K, Jiang J, Ma J (2019) Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations. In: ICCV. IEEE, pp 3106–3115
Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: ICLR (poster)
Liao R, Tao X, Li R, Ma Z, Jia J (2015) Video super-resolution via deep draft-ensemble learning. In: ICCV. IEEE Computer Society, pp 531–539
Sajjadi MSM, Vemulapalli R, Brown M (2018) Frame-recurrent video super-resolution. In: CVPR. IEEE Computer Society, pp 6626–6634
Acknowledgements
This paper is supported by the program B for Outstanding PhD candidate of Nanjing University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, J., Tang, J. & Wu, G. IAA-VSR: An iterative alignment algorithm for video super-resolution. Appl Intell 52, 16572–16585 (2022). https://doi.org/10.1007/s10489-022-03364-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-022-03364-z