Skip to main content
Log in

Fast hypergraph regularized nonnegative tensor ring decomposition based on low-rank approximation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Tensor ring (TR) decomposition is a highly effective tool for obtaining the low-rank character of multi-way data. Recently, nonnegative tensor ring (NTR) decomposition combined with manifold learning has emerged as a promising approach for exploiting the multi-dimensional structure and extracting features from tensor data. However, an existing method such as graph regularized tensor ring (GNTR) decomposition only models the pair-wise similarities of objects. The graph cannot precisely encode similarity relationships for tensor data with a complex manifold structure. In this paper, to sufficiently utilize the high-dimensional and complex similarities among objects, we add a novel hypergraph regulation into the NTR framework to further enhance feature extraction. Based on this, we propose a hypergraph regularized nonnegative tensor ring decomposition (HGNTR) model. To reduce computational complexity and suppress noise, we apply the low-rank approximation trick to accelerate HGNTR (called LraHGNTR). Our experiment results demonstrate that the proposed HGNTR and LraHGNTR algorithms outperform other state-of-the-art algorithms; additionally, LraHGNTR significantly reduces running time without sacrificing accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lee D D, Seung H S (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  MATH  Google Scholar 

  2. Sheng Y, Wang M, Wu T, Xu H (2019) Adaptive local learning regularized nonnegative matrix factorization for data clustering. Appl Intell 49(6):2151–2168

    Article  Google Scholar 

  3. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Machine Learn Res 7(11)

  4. Chen S-B, Ding CHQ, Luo B (2014) Similarity learning of manifold data. IEEE Trans Cybern 45(9):1744–1756

    Article  Google Scholar 

  5. Zhang L, Liu Z, Pu J, Song B (2020) Adaptive graph regularized nonnegative matrix factorization for data representation. Appl Intell 50(2):438–447

    Article  Google Scholar 

  6. Li S, Li W, Hu J, Li Y (2021) Semi-supervised bi-orthogonal constraints dual-graph regularized nmf for subspace clustering. Appl Intell:1–22

  7. Shu Z, Weng Z, Yu Z, You C, Liu Z, Tang S, Wu X (2021) Correntropy-based dual graph regularized nonnegative matrix factorization with lp smoothness for data representation. Appl Intell:1–17

  8. Cai D, He X, Han J, Huang T S (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Google Scholar 

  9. Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan H A (2015) Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Process Mag 32(2):145–163

    Article  Google Scholar 

  10. Zhao Q, Sugiyama M, Yuan L, Cichocki A (2019) Learning efficient tensor representations with ring-structured networks. IEEE, pp 8608–8612. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

  11. Yuan L, Li C, Mandic D, Cao J, Zhao Q (2019) Tensor ring decomposition with rank minimization on latent space: An efficient approach for tensor completion, vol 33. Proceedings of the AAAI Conference on Artificial Intelligence, pp 9151–9158

  12. Peng W, Li T (2011) On the equivalence between nonnegative tensor factorization and tensorial probabilistic latent semantic analysis. Appl Intell 35(2):285–295

    Article  Google Scholar 

  13. Zhang T, Zhao J, Sun Q, Zhang B, Chen J, Gong M (2021) Low-rank tensor completion via combined tucker and tensor train for color image recovery. Appl Intell:1–16

  14. Zhou G, Cichocki A, Zhao Q, Xie S (2014) Nonnegative matrix and tensor factorizations: An algorithmic perspective. IEEE Signal Proc Mag 31(3):54–65

    Article  Google Scholar 

  15. Yu Y, Zhou G, Zheng N, Xie S, Zhao Q (2020) Graph regularized nonnegative tensor ring decomposition for multiway representation learning. arXiv:http://arxiv.org/abs/2010.05657

  16. Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272

    Article  MathSciNet  MATH  Google Scholar 

  17. Bretto A (2013) Hypergraph theory. An introduction. Mathematical Engineering. Springer, Cham

  18. Zhou D, Huang J, Schölkopf B (2006) Learning with hypergraphs: Clustering, classification, and embedding. Adv Neural Inf Process Syst 19:1601–1608

    Google Scholar 

  19. Zeng K, Yu J, Li C, You J, Jin T (2014) Image clustering by hyper-graph regularized non-negative matrix factorization. Neurocomputing 138:209–217

    Article  Google Scholar 

  20. Wu W, Kwong S, Zhou Y, Jia Y, Gao W (2018) Nonnegative matrix factorization with mixed hypergraph regularization for community detection. Inf Sci 435:263–281

    Article  MathSciNet  MATH  Google Scholar 

  21. Tenenbaum J B, De Silva V, Langford J C (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  22. Martinsson P-G, Rokhlin V, Tygert M (2011) A randomized algorithm for the decomposition of matrices. Appl Comput Harmon Anal 30(1):47–68

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou G, Cichocki A, Xie S (2012) Fast nonnegative matrix/tensor factorization based on low-rank approximation. IEEE Trans Signal Process 60(6):2928–2940

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou G, Cichocki A, Zhao Q, Xie S (2015) Efficient nonnegative tucker decompositions: Algorithms and uniqueness. IEEE Trans Image Process 24(12):4990–5003

    Article  MathSciNet  MATH  Google Scholar 

  25. Kolda T G, Bader B W (2009) Tensor decompositions and applications. SIAM Rev 51 (3):455–500

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao Q, Zhou G, Xie S, Zhang L, Cichocki A (2016) Tensor ring decomposition. arXiv:http://arxiv.org/abs/1606.05535

  27. Chen Y, He W, Yokoya N, Huang T-Z, Zhao X-L (2019) Nonlocal tensor-ring decomposition for hyperspectral image denoising. IEEE Trans Geosci Remote Sens 58(2):1348–1362

    Article  Google Scholar 

  28. Oseledets I V (2011) Tensor-train decomposition. SIAM J Sci Comput 33(5):2295–2317

    Article  MathSciNet  MATH  Google Scholar 

  29. He W, Yokoya N, Yuan L, Zhao Q (2019) Remote sensing image reconstruction using tensor ring completion and total variation. IEEE Trans Geosci Remote Sens 57(11):8998–9009

    Article  Google Scholar 

  30. Yu J, Zhou G, Sun W, Xie S (2021) Robust to rank selection: Low-rank sparse tensor-ring completion. IEEE Transactions on Neural Networks and Learning Systems

  31. Yu J, Zhou G, Li C, Zhao Q, Xie S (2020) Low tensor-ring rank completion by parallel matrix factorization. IEEE Transactions on Neural Networks and Learning Systems

  32. Xu Y, Wu Z, Chanussot J, Wei Z (2020) Hyperspectral images super-resolution via learning high-order coupled tensor ring representation. IEEE Trans Neural Netw Learn Syst 31(11):4747–4760

    Article  MathSciNet  Google Scholar 

  33. He W, Chen Y, Yokoya N, Li C, Zhao Q (2022) Hyperspectral super-resolution via coupled tensor ring factorization. Pattern Recogn 122:108280

    Article  Google Scholar 

  34. Pan Y, Xu J, Wang M, Ye J, Wang F, Bai K, Xu Z (2019) Compressing recurrent neural networks with tensor ring for action recognition, vol 33. Proceedings of the AAAI Conference on Artificial Intelligence, pp 4683–4690

  35. Hong C, Yu J, Li J, Chen X (2013) Multi-view hypergraph learning by patch alignment framework. Neurocomputing 118:79–86

    Article  Google Scholar 

  36. Wang C, Yu J, Tao D (2013) High-level attributes modeling for indoor scenes classification. Neurocomputing 121:337–343

    Article  Google Scholar 

  37. Huang Y, Liu Q, Lv F, Gong Y, Metaxas D N (2011) Unsupervised image categorization by hypergraph partition. IEEE Trans Pattern Anal Mach Intell 33(6):1266–1273

    Article  Google Scholar 

  38. Tian Z, Hwang T, Kuang R (2009) A hypergraph-based learning algorithm for classifying gene expression and arraycgh data with prior knowledge. Bioinformatics 25(21):2831–2838

    Article  Google Scholar 

  39. Jin T, Ji R, Gao Y, Sun X, Zhao X, Tao D (2018) Correntropy-induced robust low-rank hypergraph. IEEE Trans Image Process 28(6):2755–2769

    Article  MathSciNet  MATH  Google Scholar 

  40. Gao Y, Zhang Z, Lin H, Zhao X, Du S, Zou C (2020) Hypergraph learning: Methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelligence

  41. Huang S, Wang H, Ge Y, Huangfu L, Zhang X, Yang D (2018) Improved hypergraph regularized nonnegative matrix factorization with sparse representation. Pattern Recogn Lett 102:8–14

    Article  Google Scholar 

  42. Drineas P, Kannan R, Mahoney M W (2006) Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix. SIAM J Comput 36(1):158–183

    Article  MathSciNet  MATH  Google Scholar 

  43. Halko N, Martinsson P-G, Tropp J A (2011) Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev 53(2):217–288

    Article  MathSciNet  MATH  Google Scholar 

  44. Mahoney M W (2010) Randomized algorithms for matrices and data. Mach Learn 3(2):123–224

    MATH  Google Scholar 

  45. Caiafa C F, Cichocki A (2010) Generalizing the column–row matrix decomposition to multi-way arrays. Linear Algebra Appl 433(3):557–573

    Article  MathSciNet  MATH  Google Scholar 

  46. Vannieuwenhoven N, Vandebril R, Meerbergen K (2011) On the truncated multilinear singular value decomposition. Numerical Analysis and Applied Mathematics Section

  47. Qiu Y, Zhou G, Wang Y, Zhang Y, Xie S (2020) A generalized graph regularized non-negative tucker decomposition framework for tensor data representation. IEEE Transactions on Cybernetics

  48. Sofuoglu S E, Aviyente S (2020) Graph regularized tensor train decomposition. IEEE, pp 3912–3916. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

  49. Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) STAC: a web platform for the comparison of algorithms using statistical tests. Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

Download references

Acknowledgements

This work was supported in part by the Guangdong Key R&D Project of China (Grant 2019B010121001) and the National Natural Science Foundation of China (Grant 62073087, Grant U1911401, Grant 62071132, and Grant 61973090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxu Zhou or Qibin Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yu, Y., Zhou, G. et al. Fast hypergraph regularized nonnegative tensor ring decomposition based on low-rank approximation. Appl Intell 52, 17684–17707 (2022). https://doi.org/10.1007/s10489-022-03346-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03346-1

Keywords

Navigation