Skip to main content
Log in

SOCP approach to robust twin parametric margin support vector machine

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Twin parametric-margin support vector machine (TPMSVM) is one of the classification tools based on parametric margin ν-SVM (par-ν-SVM) and twin SVM (TWSVM) which is useful for the data having heteroscedastic error structure. However, TPMSVM does not take into account the data uncertainty that might affect model accuracy. In this paper, we study TPMSVM under ellipsoidal uncertainty and its robust counterpart is presented as a second-order cone program (SOCP). Moreover, the robust formulation is extended to the nonlinear case using Gaussian kernels. To evaluate the efficiency of the proposed robust models, experiments have been conducted on nineteen University of California Irvine (UCI) datasets and the results have been compared with TWSVM, twin minimax probability machine classification (TMPMC), TPMSVM, Robust parametric TWSVM (RPTWSVM), and Twin SOCP−SVM (TSOCP−SVM) in the literature. The results show that the new model yieldsbetter classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  2. Vapnik VN (1996) The nature of statistical learning theory. Springer, NewYork

    MATH  Google Scholar 

  3. Vapnik VN (1998) Statistical learning theory. Wiley, NewYork

    MATH  Google Scholar 

  4. Joachims T (1998) Text categorization with support vector machines: Learning with many relevant features. In: European conference on machine learning. Springer, Berlin, pp 137–142

  5. Schölkopf B, Tsuda K, Vert JP (2004) Kernel methods in computational biology. MIT Press

  6. Cao L, Tay FE (2001) Financial forecasting using support vector machines. Neural Comput Appl 10(2):184–192

    Article  Google Scholar 

  7. Jayadeva R, Khemchandani SC (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

    Article  Google Scholar 

  8. Ding S, Zhang N, Zhang X, Wu F (2017) Twin support vector machine: theory, algorithm and applications. Neural Comput Appl 28(11):3119–30

    Article  Google Scholar 

  9. Ding S, Zhao X, Zhang J, Zhang X, Xue Y (2019) A review on multi-class TWSVM. Artif Intell Rev 52(2):775–801

    Article  Google Scholar 

  10. Ding S, An Y, Zhang X, Wu F, Xue Y (2017) Wavelet twin support vector machines based on glowworm swarm optimization. Neurocomputing 225:157–63

    Article  Google Scholar 

  11. Nasiri JA, Mir AM (2020) An enhanced KNN-based twin support vector machine with stable learning rules. Neural Comput Appl 16:12949–69

    Article  Google Scholar 

  12. Jimenez-Castano C, Alvarez-Meza A, Orozco-Gutierrez A (2020) Enhanced automatic twin support vector machine for imbalanced data classification. Pattern Recogn 107:107442

  13. Peng X (2011) TPMSVM: A novel twin parametric-margin suppor vector machine for pattern recognition. Pattern Recogn 44(10-11):2678–2692

    Article  Google Scholar 

  14. Hao P (2010) New support vector algorithms with parametric insensitive margin model. Neural Netw 23(1):60–73

    Article  Google Scholar 

  15. Gupta D, Borah P, Prasad M (2017) A fuzzy based Lagrangian twin parametric-margin support vector machine (FLTPMSVM). In: 2017 IEEE symposium series on computational intelligence (SSCI), pp 1–7

  16. Wang Z, Shao YH, Bai L, Li LC, Liu LM, Deng N (2018) Insensitive stochastic gradient twin support vector machines for large scale problems. Inf Sci 462(1):114–31

    Article  MathSciNet  Google Scholar 

  17. Rastogi R, Saigal P, Chandra S (2018) Angle-based twin parametric-margin support vector machine for pattern classification. Knowl-Based Syst 139:64–77

    Article  Google Scholar 

  18. Yang ZM, Hua XY, Shao YH, Ye YF (2016) A novel parametric-insensitive nonparallel support vector machine for regression. Neurocomputing 171:649–63

    Article  Google Scholar 

  19. Rastogi R, Sharma S, Chandra S (2018) Robust parametric twin support vector machine for pattern classification. Neural Process Lett 47(1):293–323

    Article  Google Scholar 

  20. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press

  21. Lanckriet GR, Ghaoui LE, Bhattacharyya C, Jordan MI (2002) A robust minimax approach to classification. J Mach Learn Res, pp 555–82

  22. Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math. Oper Res 28(1):1–38

  23. Goldfarb D, Iyengar G (2003) Robust convex quadratically constrained programs. Math Program 97(3):495–515

    Article  MathSciNet  Google Scholar 

  24. Zhong P, Fukushima M (2007) Second order cone programming formulations for robust multi-classclassification. Neural Comput 19(1):258–282

    Article  MathSciNet  Google Scholar 

  25. Shivaswamy PK, Bhattacharyya C, Smola AJ (2006) Second order cone programming approaches for handling missing and uncertain data. J Mach Learn Res 7:1283–1314

    MathSciNet  MATH  Google Scholar 

  26. Takeda A, Fujiwara S, Kanamori T (2014) Extended robust support vector machine based on financial risk minimization. Neural Netw 26(11):2541–2569

    MathSciNet  MATH  Google Scholar 

  27. Qi Z, Tian Y, Shi Y (2013) Robust twin support vector machine for pattern classification. Pattern Recogn 46(1):305–316

    Article  Google Scholar 

  28. Maldonado S, Lopez J, Carrasco M (2016) A second-order cone programming formulation for twin support vector machines. Appl Intell 45(2):256–276

    Article  Google Scholar 

  29. Ma J, Shen J (2020) A novel twin minimax probability machine for classification and regression. Knowl-Based Syst 196:105703

  30. Deng N, Tian Y, Zhang C (2012) Support vector machines optimization based theory, Algorithms, and Extensions. Champman & Hall

  31. Schölkopf B, Smola AJ, Williamson R, Bartlett PL (2000) New support vector algorithms. Neural Comput 12(5):1207– 1245

    Article  Google Scholar 

  32. Mercer J (1909) Functions of positive and negative type and the connection with the theory of integal equations. Philos Trans R Soc Lond, Ser A, containing papers of a mathematical or physical character 209(441-458):415–446

    MATH  Google Scholar 

  33. Santos CEDS, Sampaio RC, Coelho LDS, Bestard GA, Llanos CH (2021) Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection. Pattern Recogn 110:107649

  34. Faris H, Hassonah MA, Ala’M AZ, Mirjalili S, Aljarah I (2018) A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput Appl 8:2355-69

  35. Laanaya H, Abdallah F, Snoussi H, Richard C (2011) Learning general Gaussian kernel hyperparameters of SVMs using optimization on symmetric positive-definite matrices manifold. Pattern Recogn. Lett. 32(13):1511–5

  36. Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification, pp 1396–1400

  37. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley

  38. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  39. Iman RL, Davenport JM (1980) Approximations of the critical region of the fbietkan statistic. Commun Stat-Theory Methods 9(6):571–595

    Article  Google Scholar 

  40. Marshall AW, Olkin I (1960) Multivariate chebyshev inequalities. Ann Math Stat 31(4):1001–1014

  41. Gao J, Xu Y, Barreiro-Gomez J, Ndong M, Smyrnakis M, Tembine H (2018) Distributionally robust optimization. Algorithms-Examples, pp 1

  42. Shafieezadeh Abadeh S (2020) Wasserstein distributionally robust learning. EPFL

  43. Bosch P, López J, Ramırez H, Robotham H (2013) Support vector machine under uncertainty: An application for hydroacoustic classification of fish-schools in chile. Expert Syst Appl 40(10):4029–4034

    Article  Google Scholar 

  44. Liu X, Zhu X, Li M, Wang L, Zhu E, Liu T, Kloft M, Shen D, Yin J, Gao W (2019) Multiple kernel k-means with incomplete kernels. IEEE Trans Pattern Anal Mach Intell 42(5):1191– 204

    Google Scholar 

  45. Zhang Z, Xu Z, Tan J, Zou H (2021) Multi-class support vector machine based on the minimization of class variance. Neural Process Lett 53(1):517–33

    Article  Google Scholar 

  46. Moreno-Torres JG, Raeder T, Alaiz-Rodríguez R, Chawla NV, Herrera F (2012) A unifying view on dataset shift in classification. Pattern Recogn 45(1):521–30

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Salahi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahleh, A., Salahi, M. & Eskandari, S. SOCP approach to robust twin parametric margin support vector machine. Appl Intell 52, 9174–9192 (2022). https://doi.org/10.1007/s10489-021-02859-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02859-5

Keywords

Navigation