Skip to main content

Advertisement

Log in

A hybrid genetic-particle swarm optimizer using precise mutation strategy for computationally expensive problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Rational use of resources and efficient production are the focus of today’s society, which makes it urgent to develop an algorithm that can solve most problems and has intelligent characteristics. Particle swarm optimization (PSO) and genetic algorithm (GA) are evolutionary algorithms that have been applied successfully in various complex fields. However, both have their advantages and disadvantages. A hybrid GA-PSO algorithm that employs a precise mutation strategy (PMGPSO) is developed in this paper to utilize their outstanding abilities fully and minimize their shortcomings. In PMGPSO, the precise mutation strategy related to two clustering coefficients is proposed. This strategy distinguishes the degree of required mutation by particle swarm in different periods and coordinates the performance of exploration and exploitation. Furthermore, adopt a sort-based selection method to accelerate the convergence speed and cross the poor particles with the excellent particles to expand the search range. Chaotic sequences are used to generate initial particles and update inertia weight. The performance of PMGPSO is studied with 12 basic benchmark functions and 20 functions extracted from the CEC’2014 test suite. The comparison results with some representative algorithms and existing data demonstrate that PMGPSO provides a high-accuracy solution with a faster convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gacem A, Benattous D (2017) Hybrid GA-PSO for optimal placement of static VAR compensators in power system. Int J Syst Assur Eng Manag 8(1):247–254. https://doi.org/10.1007/s13198-015-0347-5

    Article  Google Scholar 

  2. Liu Y, Dai J, Zhao S, Zhang J, Shang W, Li T, Zheng Y, Lan T, Wang Z (2020) Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm. Optik:219. https://doi.org/10.1016/j.ijleo.2020.164978

  3. Chou JS, Dinh-Nhat T, Thuy-Linh L (2020) Interval forecasting of financial time series by accelerated particle swarm-optimized multi-output machine learning system. IEEE Access 8:14798–14808. https://doi.org/10.1109/access.2020.2965598

    Article  Google Scholar 

  4. Uthayakumar J, Metawa N, Shankar K, Lakshmanaprabu SK (2020) Financial crisis prediction model using ant colony optimization. Int J Inf Manag 50:538–556. https://doi.org/10.1016/j.ijinfomgt.2018.12.001

    Article  Google Scholar 

  5. Jaafari A, Zenner EK, Panahi M, Shahabi H (2019) Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric For Meteorol 266:198–207. https://doi.org/10.1016/j.agrformet.2018.12.015

    Article  Google Scholar 

  6. Zhang JD, Lu JG, Li HL (2011) Hybrid particle swarm optimization algorithm for image segmentation. Int J Model Identif Control 14(4):317–323. https://doi.org/10.1504/ijmic.2011.043156

    Article  Google Scholar 

  7. Deng W, Yao R, Zhao H, Yang X, Li G (2019) A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput 23(7):2445–2462. https://doi.org/10.1007/s00500-017-2940-9

    Article  Google Scholar 

  8. Manasrah AM, Ali HB (2018) Workflow scheduling using hybrid GA-PSO algorithm in cloud computing. Wirel Commun Mob Comput. https://doi.org/10.1155/2018/1934784

  9. Li D, Li K, Liang JJ, Ouyang A (2019) A hybrid particle swarm optimization algorithm for load balancing of MDS on heterogeneous computing systems. Neurocomputing 330:380–393. https://doi.org/10.1016/j.neucom.2018.11.034

    Article  Google Scholar 

  10. Agarwal M, Srivastava GMS (2018) Genetic algorithm-enabled particle swarm optimization (PSOGA)-based task scheduling in cloud computing environment. Int J Inf Technol Decis Mak 17(4):1237–1267. https://doi.org/10.1142/s0219622018500244

    Article  Google Scholar 

  11. Elhoseny M, Abdelaziz A, Salama AS, Riad AM, Muhammad K, Sangaiah AK (2018) A hybrid model of internet of things and cloud computing to manage big data in health services applications. Futur Gener Comput Syst 86:1383–1394. https://doi.org/10.1016/j.future.2018.03.005

    Article  Google Scholar 

  12. Lin YH, Hu YC (2018) Residential consumer-centric demand-side management based on energy disaggregation-piloting constrained swarm intelligence: towards edge computing. Sensors 18(5). https://doi.org/10.3390/s18051365

  13. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE conference on neural network, pp 1942–1948. https://doi.org/10.1109/icnn.1995.488968

  14. Wang DS, Tan DP, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408. https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  15. Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105. https://doi.org/10.1137/0202009

    Article  MathSciNet  MATH  Google Scholar 

  16. Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern Part C Appl Rev 36(4):515–519. https://doi.org/10.1109/tsmcc.2006.875410

    Article  Google Scholar 

  17. Elsayed SM, Sarker RA, Essam DL (2012) Memetic multi-topology particle swarm optimizer for constrained optimization. In: IEEE congress on evolutionary computation pp.1–8

  18. Liu Y, Niu B, Luo Y (2015) Hybrid learning particle swarm optimizer with genetic disturbance. Neurocomputing 151:1237–1247. https://doi.org/10.1016/j.neucom.2014.03.081

    Article  Google Scholar 

  19. Hsieh ST, Sun TY, Liu CC, Tsai SJ (2009) Efficient population utilization strategy for particle swarm optimizer. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics 39(2):444–456. https://doi.org/10.1109/tsmcb.2008.2006628

    Article  Google Scholar 

  20. Janson S, Middendorf M (2005) A hierarchical particle swarm optimizer and its adaptive variant. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics 35(6):1272–1282. https://doi.org/10.1109/tsmcb.2005.850530

    Article  Google Scholar 

  21. Abd-El-Wahed WF, Mousa AA, El-Shorbagy MA (2011) Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems. J Comput Appl Math 235(5):1446–1453. https://doi.org/10.1016/j.cam.2010.08.030

    Article  MathSciNet  MATH  Google Scholar 

  22. Ning Y, Peng Z, Dai Y, Bi D, Wang J (2019) Enhanced particle swarm optimization with multi-swarm and multi-velocity for optimizing high-dimensional problems. Appl Intell 49(2):335–351. https://doi.org/10.1007/s10489-018-1258-3

    Article  Google Scholar 

  23. Zhao X (2010) A perturbed particle swarm algorithm for numerical optimization. Appl Soft Comput 10(1):119–124. https://doi.org/10.1016/j.asoc.2009.06.010

    Article  Google Scholar 

  24. Cheung NJ, Ding XM, Shen HB (2015) A supervised particle swarm algorithm for real-parameter optimization. Appl Intell 43(4):825–839. https://doi.org/10.1007/s10489-015-0683-9

    Article  Google Scholar 

  25. Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36. https://doi.org/10.1016/j.ins.2012.04.028

    Article  MathSciNet  Google Scholar 

  26. Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55(1):165–188. https://doi.org/10.1007/s10898-012-9913-4

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang H, Sun H, Li C, Rahnamayan S, Pan J (2013) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135. https://doi.org/10.1016/j.ins.2012.10.012

    Article  MathSciNet  Google Scholar 

  28. Arumugam MS, Rao MVC, Chandramohan A (2008) A new and improved version of particle swarm optimization algorithm with global-local best parameters. Knowl Inf Syst 16(3):331–357. https://doi.org/10.1007/s10115-007-0109-z

    Article  Google Scholar 

  29. Montes de Oca MA, Stutzle T, Van den Enden K, Dorigo M (2011) Incremental social learning in particle swarms. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics 41(2):368–384. https://doi.org/10.1109/tsmcb.2010.2055848

    Article  Google Scholar 

  30. Norouzzadeh MS, Ahmadzadeh MR, Palhang M (2012) LADPSO: using fuzzy logic to conduct PSO algorithm. Appl Intell 37(2):290–304. https://doi.org/10.1007/s10489-011-0328-6

    Article  Google Scholar 

  31. Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83. https://doi.org/10.1016/j.ins.2012.05.020

    Article  Google Scholar 

  32. Zhan ZH, Zhang J, Li Y, Shi YH (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847. https://doi.org/10.1109/tevc.2010.2052054

    Article  Google Scholar 

  33. Ren M, Huang X, Zhu X, Shao L (2020) Optimized PSO algorithm based on the simplicial algorithm of fixed point theory. Appl Intell 50(7):2009–2024. https://doi.org/10.1007/s10489-020-01630-6

    Article  Google Scholar 

  34. Kao YT, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8(2):849–857. https://doi.org/10.1016/j.asoc.2007.07.002

    Article  Google Scholar 

  35. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80(5):8091–8126. https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  36. Bansal JC, Singh PK, Saraswat M, Verma A, Abraham A (2011) Inertia weight strategies in particle swarm optimization. Third World Congress on Nature & Biologically Inspired Computing Salamanca https://doi.org/10.1109/NaBIC.2011.6089659

  37. Wang F, Zhang H, Li K, Lin Z, Yang J, Shen X (2018) A hybrid particle swarm optimization algorithm using adaptive learning strategy. Inf Sci 436:162–177. https://doi.org/10.1016/j.ins.2018.01.027

    Article  MathSciNet  Google Scholar 

  38. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Tech Rep

  39. Suganthan PN, HansenN LJJ, Deb Y, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Tech Rep

  40. Xia X, Gui L, He G, Xie C, Wei B, Xing Y, Wu R, Tang Y (2018) A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm. J Comput Sci 26:488–500. https://doi.org/10.1016/j.jocs.2017.07.009

    Article  Google Scholar 

  41. Storn R (1996) On the usage of differential evolution for function optimization. 1996 Biennial Conference of the North American Fuzzy Information Processing Society–Nafips, pp 519–523. https://doi.org/10.1109/NAFIPS.1996.534789

  42. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Evolutionary programming VII, pp 591–600

  43. Sun J, Feng B, Xu WB (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the congress on evolutionary computation (CEC’04), pp 325–331. https://doi.org/10.1109/CEC.2004.1330875

  44. Garg H (2016) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274:292–305. https://doi.org/10.1016/j.amc.2015.11.001

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhan ZH, Zhang J, Li Y, Chung HS (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern 39(6):1362–1381. https://doi.org/10.1109/tsmcb.2009.2015956

    Article  Google Scholar 

  46. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295. https://doi.org/10.1109/tevc.2005.857610

    Article  Google Scholar 

  47. Zhang K, Huang Q, Zhang Y (2019) Enhancing comprehensive learning particle swarm optimization with local optima topology. Inf Sci 471:1–18. https://doi.org/10.1016/j.ins.2018.08.049

    Article  Google Scholar 

  48. Deng L, Zhang L, Sun H, Qiao L (2020) DSM-DE: a differential evolution with dynamic speciation-based mutation for single-objective optimization. Memetic Comput 12(1):73–86. https://doi.org/10.1007/s12293-019-00279-0

    Article  Google Scholar 

  49. Tejani GG, Saysani VJ, Patel VK, Mirjalili S (2018) Truss optimization with natural frequency bounds using improved symbiotic organisms search. Knowl-Based Syst 143:162–178. https://doi.org/10.1016/j.knosys.2017.12.012

    Article  Google Scholar 

  50. Ghambari S, Rahati A (2018) An improved artificial bee colony algorithm and its application to reliability optimization problems. Appl Soft Comput 62:736–767. https://doi.org/10.1016/j.asoc.2017.10.040

    Article  Google Scholar 

  51. Zhang H, Li R, Cai Z, Gu Z, Heidari AA, Wang M, Chen H, Chen M (2020) Advanced orthogonal moth flame optimization with Broyden-Fletcher-Goldfarb-Shanno algorithm: Framework and real-world problems Expert Systems with Applications 159. https://doi.org/10.1016/j.eswa.2020.113617

  52. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734. https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  53. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175. https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.12072160, 11972194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Zhang, X. A hybrid genetic-particle swarm optimizer using precise mutation strategy for computationally expensive problems. Appl Intell 52, 8510–8533 (2022). https://doi.org/10.1007/s10489-021-02828-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02828-y

Keywords

Navigation