Skip to main content
Log in

Graph-optimized coupled discriminant projections for cross-view gait recognition

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Graph-Embedding is a widely used learning technique in pattern recognition. However, it is difficult to construct an inter-view graph for cross-view gait samples. To remedy it, in this paper, we propose a novel cross-view gait recognition algorithm named Graph-optimized Coupled Discriminant Projections (GoCDP), which seeks coupled projections based on adaptive graph learning. Regarding the embedding graphs as variables rather than predefined constants, we integrate inter-view graph construction with projection optimization process into a unified framework. By an alternate iteration algorithm, we can ultimately obtain the optimal coupled projections. Moreover, we extend GoCDP to multi-view case called Graph-optimized Multiview Discriminant Projections (GoMDP) for multi-view subspace learning. Experimental results on two benchmark gait datasets, CASIA-B and OU-ISIR, demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bashir K, Xiang T, Gong S (2010) Cross-view gait recognition using correlation strength. pp 1–11

  2. Bashir K, Xiang T, Gong S (2010) Gait recognition using gait entropy image. In: International conference on crime detection and prevention

  3. Ben X, Gong C, Zhang P, Jia X, Wu Q, Meng W (2019) Coupled patch alignment for matching cross-view gaits. IEEE Trans Image Process PP(6):1–1

    MathSciNet  MATH  Google Scholar 

  4. Ben X, Gong C, Zhang P, Yan R, Wu Q, Meng W (2020) Coupled bilinear discriminant projection for cross-view gait recognition. IEEE Trans Circ Syst Vid Technol :734–747

  5. Chen X, Yang TQ (2014) Cross-view gait recognition in 3-d space based on gravity center track. Appl Mech Mater :4210–4215

  6. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322

    Article  Google Scholar 

  7. He X, Niyogi P (2003) Locality preserving projections. pp 153–160

  8. He Y, Zhang J, Shan H, Wang L (2019) Multi-task gans for view-specific feature learning in gait recognition. IEEE Trans Inf Forensics and Secur 14(1):102–113

    Article  Google Scholar 

  9. Hu M, Wang Y, Zhang Z, Little JJ, Huang D (2013) View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans Inf Forensics Secur 8(12):2034–2045

    Article  Google Scholar 

  10. Iwama H, Okumura M, Makihara Y, Yagi Y (2012) The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans Inf Forensics Secur 7 (5):1511–1521

    Article  Google Scholar 

  11. Jean F, Bergevin R, Albu AB (2009) Computing and evaluating view-normalized body part trajectories. Image Vis Comput 27(9):1272–1284

    Article  Google Scholar 

  12. Jun K, Lee DW, Lee K, Lee S, Kim MS (2020) Feature extraction using an rnn autoencoder for skeleton-based abnormal gait recognition. IEEE Access PP(99):1–1

    Google Scholar 

  13. Kusakunniran W, Wu Q, Zhang J, Li H (2012) Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans Circ Syst Vid Technol 22:966–980. https://doi.org/10.1109/TCSVT.2012.2186744

    Article  Google Scholar 

  14. Lam THW, Cheung K, Liu JNK (2011) Gait flow image. Pattern Recogn 44(4):973–987

    Article  Google Scholar 

  15. Liao R, Yu S, An W, Huang Y (2020) A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn 98:107069

    Article  Google Scholar 

  16. Luo J, Tang J, Tjahjadi T, Xiao X (2016) Robust arbitrary view gait recognition based on parametric 3d human body reconstruction and virtual posture synthesis. Pattern Recogn 60:361–377

    Article  Google Scholar 

  17. Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y (2006) Gait recognition using a view transformation model in the frequency domain. pp 151–163

  18. Makihara Y, Suzuki A, Muramatsu D, Li X, Yagi Y (2017) Joint intensity and spatial metric learning for robust gait recognition. In: Computer vision and pattern recognition

  19. Mansur A, Makihara Y, Muramatsu D, Yagi Y (2014) Cross-view gait recognition using view-dependent discriminative analysis. In: IEEE International joint conference on biometrics

  20. Raducanu B, Dornaika F (2012) A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recogn 45(6):2432–2444

    Article  Google Scholar 

  21. Rida I, Almaadeed N, Almaadeed S (2019) Robust gait recognition: a comprehensive survey. IET Biom

  22. Takemura N, Makihara Y, Muramatsu D, Echigo T, Yagi Y (2019) On input/output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans Circ Syst Vid Technol 29(9):2708–2719

    Article  Google Scholar 

  23. Wang C, Zhang J, Pu J, Yuan X, Wang L (2010) Chrono-gait image: a novel temporal template for gait recognition. pp 257–270

  24. Wang H, Yang Y, Liu B, Fujita H (2018) A study of graph-based system for multi-view clustering. Knowl-Based Syst 163

  25. Wang X, Chen RC, Yan F, Zeng ZQ, Hong CQ (2019) Fast adaptive k-means subspace clustering for high-dimensional data. IEEE Access :42639–42651

  26. Wang X, Chen RC, Zeng ZQ, Hong CQ, Yan F (2018) Robust dimension reduction for clustering with local adaptive learning. IEEE Trans Neural Netw Learn Syst PP:1–13

    Google Scholar 

  27. Wu Z, Huang Y, Wang L, Wang X, Tan T (2017) A comprehensive study on cross-view gait based human identification with deep cnns. IEEE Trans Pattern Anal Mach Intell 39(2):209–226

    Article  Google Scholar 

  28. Xing X, Wang K, Yan T, Lv Z (2016) Complete canonical correlation analysis with application to multi-view gait recognition. Pattern Recogn :107–117

  29. Xu W, Luo C, Ji A, Zhu C (2017) Coupled locality preserving projections for cross-view gait recognition. Neurocomputing 224:37–44

    Article  Google Scholar 

  30. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  31. Yang W, Zhang S, Liang W (2008) A graph based subspace semi-supervised learning framework for dimensionality reduction. pp 664–677

  32. Yiwei H, Junping Z, Hongming S, Liang W (2018) Multi-task gans for view-specific feature learning in gait recognition. IEEE Trans Inf Forensics Secur PP:1–1

    Google Scholar 

  33. Yu S, Chen H, Reyes EBG, Poh N (2017) Gaitgan: Invariant gait feature extraction using generative adversarial networks. pp 532–539

  34. Yu S, Chen H, Wang Q, Shen L, Huang Y (2017) Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 239:81–93

    Article  Google Scholar 

  35. Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR 2006), 20-24 August, 2006, Hong Kong, China

  36. Zhang L, Qiao L, Chen S (2010) Graph-optimized locality preserving projections. Pattern Recogn 43(6):1993–2002

    Article  Google Scholar 

  37. Zhang X, Yang Y, Li T, Zhang Y, Fujita H (2020) Cmc: A consensus multi-view clustering model for predicting alzheimer’s disease progression. Comput Methods Programs Biomed :105895. https://doi.org/10.1016/j.cmpb.2020.105895

  38. Zhang Y, Huang Y, Wang L, Yu S (2019) A comprehensive study on gait biometrics using a joint cnn-based method. Pattern Recognit

  39. Zhang Y, Yang Y, Li T, Fujita H (2018) A multitask multiview clustering algorithm in heterogeneous situations based on lle and le. Knowl-Based Syst 163

  40. Zhang Z, Tran L, Liu F, Liu X (2020) On learning disentangled representations for gait recognition. IEEE Trans Pattern Anal Mach Intell

Download references

Acknowledgements

This work is jointly supported by National Natural Science Foundation of China (61906163, 11871417) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB520018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjiang Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W. Graph-optimized coupled discriminant projections for cross-view gait recognition. Appl Intell 51, 8149–8161 (2021). https://doi.org/10.1007/s10489-021-02322-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02322-5

Keywords

Navigation